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For want of a nail the shoe was lost.
For want of a shoe the horse was lost.
For want of a horse the rider was lost.
For want of a rider the battle was lost.

For want of a battle the kingdom was lost.
And all for the want of a horseshoe nail.

For Want of a Nail (proverbial rhyme)

Abstract We present a survey of the theory of the Lyapunov Characteristic
Exponents (LCEs) for dynamical systems, as well as of the numerical techniques
developed for the computation of the maximal, of few and of all of them. After
some historical notes on the first attempts for the numerical evaluation of LCEs, we
discuss in detail the multiplicative ergodic theorem of Oseledec [102], which pro-
vides the theoretical basis for the computation of the LCEs. Then, we analyze the
algorithm for the computation of the maximal LCE, whose value has been exten-
sively used as an indicator of chaos, and the algorithm of the so-called standard
method, developed by Benettin et al. [14], for the computation of many LCEs. We
also consider different discrete and continuous methods for computing the LCEs
based on the QR or the singular value decomposition techniques. Although we
are mainly interested in finite-dimensional conservative systems, i.e., autonomous
Hamiltonian systems and symplectic maps, we also briefly refer to the evaluation
of LCEs of dissipative systems and time series. The relation of two chaos detection
techniques, namely the fast Lyapunov indicator (FLI) and the generalized alignment
index (GALI), to the computation of the LCEs is also discussed.
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1 Introduction

One of the basic information in understanding the behavior of a dynamical system
is the knowledge of the spectrum of its Lyapunov Characteristic Exponents (LCEs).
The LCEs are asymptotic measures characterizing the average rate of growth (or
shrinking) of small perturbations to the solutions of a dynamical system. Their
concept was introduced by Lyapunov when studying the stability of nonstationary
solutions of ordinary differential equations [96] and has been widely employed in
studying dynamical systems since then. The value of the maximal LCE (mLCE) is
an indicator of the chaotic or regular nature of orbits, while the whole spectrum of
LCEs is related to entropy (Kolmogorov-Sinai entropy) and dimension-like (Lya-
punov dimension) quantities that characterize the underlying dynamics.

By dynamical system we refer to a physical and/or mathematical system consist-
ing of (a) a set of l real state variables x1, x2 . . . , xl , whose current values define
the state of the system, and (b) a well-defined rule from which the evolution of the
state with respect to an independent real variable (which is usually referred as the
time t) can be derived. We refer to the number l of state variables as the dimension
of the system and denote a state using the vector x = (x1, x2 . . . , xl ), or the matrix
x = [ x1 x2 . . . xl ]

T
notation, where (T) denotes the transpose matrix. A particular

state x corresponds to a point in an l-dimensional space S, the so-called phase space
of the system, while a set of states x(t) parameterized by t is referred as an orbit of
the dynamical system.

Dynamical systems come in essentially two types:

1. Continuous dynamical systems described by differential equations of the form

ẋ = dx
dt

= f(x, t),

with dot denoting derivative with respect to a continuous time t and f being a set
of l functions f1, f2 . . . , fl known as the vector field.

2. Discrete dynamical systems or maps described by difference equations of the
form

xn+1 = f(xn),

with f being a set of l functions f1, f2 . . . , fl and xn denoting the vector x at a
discrete time t = n (integer).

Let us now define the term chaos. In the literature there are many definitions. A
brief and concise presentation of them can be found, for example, in [90]. We adopt
here one of the most famous definitions of chaos due to Devaney [35, p. 50], which
is based on the topological approach of the problem.

Definition 1. Let V be a set and f : V → V a map on this set. We say that f is
chaotic on V if
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1. f has sensitive dependence on initial conditions.
2. f is topologically transitive.
3. periodic points are dense in V .

Let us explain in more detail the hypothesis of this definition.

Definition 2. f : V → V has sensitive dependence on initial
conditions if there exists δ > 0 such that, for any x ∈ V and any neighborhood
Δ of x, there exist y ∈ Δ and n ≥ 0, such that |fn(x)− fn(y)| > δ, where fn denotes
n successive applications of f.

Practically this definition implies that there exist points arbitrarily close to x which
eventually separate from x by at least δ under iterations of f. We point out that not
all points near x need eventually move away from x under iteration, but there must
be at least one such point in every neighborhood of x.

Definition 3. f : V → V is said to be topologically transitive if for any
pair of open sets U, W ⊂ V there exists n > 0 such that fn(U ) ∩ W �= ∅.

This definition implies the existence of points which eventually move under iteration
from one arbitrarily small neighborhood to any other. Consequently, the dynamical
system cannot be decomposed into two disjoint invariant open sets.

From Definition 1 we see that a chaotic system possesses three ingredients: (a)
unpredictability because of the sensitive dependence on initial conditions, (b) inde-
composability because it cannot be decomposed into noninteracting subsystems due
to topological transitivity, and (c) an element of regularity because it has periodic
points which are dense.

Usually, in physics and applied sciences, people focus on the first hypothesis of
Definition 1 and use the notion of chaos in relation to the sensitive dependence
on initial conditions. The most commonly employed method for distinguishing
between regular and chaotic motion, which quantifies the sensitive dependence on
initial conditions, is the evaluation of the mLCE χ1. If χ1 > 0 the orbit is chaotic.
This method was initially developed at the late 1970s based on theoretical results
obtained at the end of the 1960s.

The concept of the LCEs has been widely presented in the literature from a prac-
tical point of view, i.e., the description of particular numerical algorithms for their
computation [54, 44, 62, 92, 36]. Of course, there also exist theoretical studies on the
LCEs, which are mainly focused on the problem of their existence, starting with the
pioneer work of Oseledec [102]. In that paper the Multiplicative Ergodic Theorem
(MET), which provided the theoretical basis for the numerical computation of the
LCEs, was stated and proved. The MET was the subject of several theoretical studies
afterward [108, 114, 76, 141]. A combination of important theoretical and numerical
results on LCEs can be found in the seminal papers of Benettin et al. [13, 14], written
almost 30 years ago, where an explicit method for the computation of all LCEs was
developed.

In the present report we focus our attention both on the theoretical framework
of the LCEs and on the numerical techniques developed for their computation. Our
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goal is to provide a survey of the basic results on these issues obtained over the
last 40 years, after the work of Oseledec [102]. To this end, we present in detail the
mathematical theory of the LCEs and discuss its significance without going through
tedious mathematical proofs. In our approach, we prefer to present the definitions
of various quantities and to state the basic theorems that guarantee the existence
of the LCE, citing at the same time the papers where all the related mathemat-
ical proofs can be found. We also describe in detail the various numerical tech-
niques developed for the evaluation of the maximal, of few or even of all LCEs,
and explain their practical implementation. We do not restrict our presentation to
the so-called standard method developed by Benettin et al. [14], as it is usually
done in the literature (see e.g., [54, 44, 92]), but we include in our study modern
techniques for the computation of the LCEs like the discrete and continuous meth-
ods based on the singular value decomposition (SVD) and the QR decomposition
procedures.

In our analysis we deal with finite-dimensional dynamical systems and in partic-
ular with autonomous Hamiltonian systems and symplectic maps defined on a com-
pact manifold, meaning that we exclude cases with escapes in which the motion can
go to infinity. We do not consider the rather exceptional cases of completely chaotic
systems and of integrable ones, i.e., systems that can be solved explicitly to give
their variables as single-valued functions of time, but we consider the most general
case of “systems with divided phase space” [30, p. 19] for which regular1 (quasiperi-
odic) and chaotic orbits co-exist. In such systems one sees both regular and chaotic
domains. But the regular domains contain a dense set of unstable periodic orbits,
which are followed by small chaotic regions. On the other hand, the chaotic domains
contain stable periodic orbits that are followed by small islands of stability. Thus,
the regular and chaotic domains are intricately mixed. However, there are regions
where order is predominant, and other regions where chaos is predominant.

Although in our report the theory of LCEs and the numerical techniques for their
evaluation are presented mainly for conservative systems, i.e., system that preserve
the phase space volume, these techniques are not valid only for such models. For
completeness sake, we also briefly discuss at the end of the report the computation
of LCEs for dissipative systems, for which the phase space volume decreases on
average, and for time series.

We tried to make the paper self-consistent by including definitions of the used
terminology and brief overviews of all the necessary mathematical notions. In addi-
tion, whenever it was considered necessary, some illustrative examples have been
added to the text in order to clarify the practical implementation of the presented
material. Our aim has been to make this review of use for both the novice and the
more experienced practitioner interested in LCEs. To this end, the reader who is
interested in reading up on detailed technicalities is provided with numerous sign-
posts to the relevant literature.

1 Regular orbits are often called ordered orbits (see, e.g., [30, p. 18]).
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Throughout the text bold lowercase letters denote vectors, while matrices are
represented, in general, by capital bold letters. We also note that the most frequently
used abbreviations in the text are LCE(s), Lyapunov characteristic exponent(s);
p-LCE, Lyapunov characteristic exponent of order p; mLCE, maximal Lyapunov
characteristic exponent; p-mLCE, maximal Lyapunov characteristic exponent of
order p; MET, multiplicative ergodic theorem; SVD, singular value decomposition;
PSS, Poincaré surface of section; FLI, fast Lyapunov indicator; GALI, generalized
alignment index.

This chapter is organized as follows.
In Sect. 2 we present the basic concepts of Hamiltonian systems and symplectic

maps, emphasizing on the evolution of orbits, as well as of deviation vectors about
them. In particular, we define the so-called variational equations for Hamiltonian
systems and the tangent map for symplectic maps, which govern the time evolution
of deviation vectors. We also provide some simple examples of dynamical systems
and derive the corresponding set of variational equations and the corresponding tan-
gent map.

Section 3 contains some historical notes on the first attempts for the application
of the theoretical results of Oseledec [102] for the actual computation of the LCEs.
We recall how the notion of exponential divergence of nearby orbits was eventually
quantified by the computation of the mLCE, and we refer to the papers where the
mLCE or the spectrum of LCEs were computed for the first time.

The basic theoretical results on the LCEs are presented in Sect. 4 following
mainly the milestone papers of Oseledec [102] and Benettin et al. [13, 14]. In
Sect. 4.1 the basic definitions and theoretical results of LCEs of various orders are
presented. The practical consequences of these results on the computation of the
LCEs of order 1 and of order p > 1 are discussed in Sects. 4.2 and 4.3, respectively.
Then, in Sect. 4.4 the MET of Oseledec [102] is stated in its various forms, while
its consequences on the spectrum of LCEs for conservative dynamical systems are
discussed in Sect. 4.5.

Section 5 is devoted to the computation of the mLCE χ1, which is the oldest
chaos indicator used in the literature. In Sect. 5.1 the method for the computation
of the mLCE is discussed in great detail and the theoretical basis of its evaluation is
explained. The corresponding algorithm is presented in Sect. 5.2, while the behavior
of χ1 for regular and chaotic orbits is analyzed in Sect. 5.3.

In Sect. 6 the various methods for the computation of part or of the whole spec-
trum of LCEs are presented. In particular, in Sect. 6.1 the standard method devel-
oped in [119, 14] is presented in great detail, while the corresponding algorithm
is given in Sect. 6.2. In Sect. 6.3 the connection of the standard method with the
discrete QR decomposition technique is discussed and the corresponding QR algo-
rithm is given, while Sect. 6.4 is devoted to the presentation of other techniques for
computing few or all LCEs, which are based on the SVD and QR decomposition
algorithms.

In Sect. 7 we briefly refer to various chaos detection techniques based on the
analysis of deviation vectors, as well as to a second category of chaos indicators
based on the analysis of the time series constructed by the coordinates of the orbit
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under consideration. The relation of two chaos indicators, namely the fast Lyapunov
indicator (FLI) and the generalized alignment index (GALI), to the computation of
the LCEs is also discussed.

Although the main topic of our presentation is the theory and the computation
of the LCEs for conservative dynamical systems, in the last section of our report
some complementary issues related to other types of dynamical systems are con-
cisely presented. In particular, Sect. 8.1 is devoted to the computation of the LCEs
for dissipative systems, while in Sect. 8.2 some basic features on the numerical
computation of the LCEs from a time series are presented.

Finally, in Appendix we present some basic elements of the exterior algebra
theory in connection to the evaluation of wedge products, which are needed for
the computation of the volume elements appearing in the definitions of the various
LCEs.

2 Autonomous Hamiltonian Systems and Symplectic Maps

In our study we consider two main types of conservative dynamical systems:

1. Continuous systems corresponding to an autonomous Hamiltonian system of N
degrees (ND) of freedom having a Hamiltonian function

H (q1, q2, . . . , qN , p1, p2, . . . , pN ) = h = constant, (1)

where qi and pi , i = 1, 2, . . . , N are the generalized coordinates and conjugate
momenta, respectively. An orbit in the l = 2N -dimensional phase space S of
this system is defined by a vector:

x(t) = (q1(t), q2(t), . . . , qN (t), p1(t), p2(t), . . . , pN (t)),

with xi = qi , xi+N = pi , i = 1, 2, . . . , N . The time evolution of this orbit is
governed by the Hamilton equations of motion, which in matrix form are given
by

ẋ = f(x) =
[

∂H
∂p − ∂H

∂q

]T
= J2N · DH, (2)

with q = (q1(t), q2(t), . . . , qN (t)), p = (p1(t), p2(t), . . . , pN (t)), and

DH =
[

∂H
∂q1

∂H
∂q2

· · · ∂H
∂qN

∂H
∂p1

∂H
∂p2

· · · ∂H
∂pN

]T
.

Matrix J2N has the following block form:

J2N =
[

0N IN

−IN 0N

]
,
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with IN being the N × N identity matrix and 0N being the N × N matrix with
all its elements equal to zero. The solution of (2) is formally written with respect
to the induced flow Φ t : S → S as

x(t) = Φ t (x(0)) . (3)

2. Symplectic maps of l = 2N dimensions having the form

xn+1 = f(xn). (4)

A symplectic map is an area-preserving map whose Jacobian matrix

M = Df(x) = ∂f
∂x

=

⎡
⎢⎢⎢⎢⎣

∂ f1

∂x1

∂ f1

∂x2
· · · ∂ f1

∂x2N
∂ f2

∂x1

∂ f2

∂x2
· · · ∂ f2

∂x2N

...
...

...
∂ f2N

∂x1

∂ f2N

∂x2
· · · ∂ f2N

∂x2N

⎤
⎥⎥⎥⎥⎦ ,

satisfies

MT · J2N · M = J2N . (5)

The state of the system at the discrete time t = n is given by

xn = Φn (x0) = (f)n (x0) , (6)

where (f)n (x0) = f(f(· · · f(x0) · · · )), n times.

2.1 Variational Equations and Tangent Map

Let us now turn our attention to the (continuous or discrete) time evolution of devi-
ation vectors w from a given reference orbit of a dynamical system. These vectors
evolve on the tangent space TxS of S. We denote by dxΦ

t the linear mapping which
maps the tangent space of S at point x onto the tangent space at point Φ t (x), and so
we have dxΦ

t : TxS → T Φ
t
(x)S with

w(t) = dxΦ
t w(0), (7)

where w(0), w(t) are deviation vectors with respect to the given orbit at times t = 0
and t > 0, respectively.

In the case of the Hamiltonian system (1) an initial deviation vector
w(0) = (δx1(0), δx2(0), . . . , δx2N (0)) from the solution x(t) (3) evolves on the tan-
gent space TxS according to the so-called variational equations:
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ẇ = Df(x(t)) · w = ∂f
∂x

(x(t)) · w = [J2N · D2H(x(t))
] · w =: A(t) · w , (8)

with D2H(x(t)) being the Hessian matrix of Hamiltonian (1) calculated on the ref-
erence orbit x(t) (3), i.e.,

D2H(x(t))i, j = ∂2 H

∂xi∂x j

∣∣∣∣
Φ

t
(x(0))

, i, j = 1, 2, . . . , 2N .

We underline that (8) represents a set of linear differential equations with respect to
w, having time-dependent coefficients, since matrix A(t) depends on the particular
reference orbit, which is a function of time t . The solution of (8) can be written as

w(t) = Y(t) · w(0), (9)

where Y(t) is the so-called fundamental matrix of solutions of (8), satisfying the
following equation.

Ẏ(t) = Df(x(t)) · Y(t) = A(t) · Y(t) , with Y(0) = I2N . (10)

In the case of the symplectic map (4) the evolution of a deviation vector wn , with
respect to a reference orbit xn , is given by the corresponding tangent map:

wn+1 = Df(xn) · wn = ∂f
∂x

(xn) · wn =: Mn · wn. (11)

Thus, the evolution of the initial deviation vector w0 is given by

wn = Mn−1 · Mn−2 · . . . · M0 · w0 =: Yn · w0, (12)

with Yn satisfying the relation

Yn+1 = Mn · Yn = Df(xn) · Yn, with Y0 = I2N . (13)

2.2 Simple Examples of Dynamical Systems

As representative examples of dynamical systems we consider (a) the well-known
2D Hénon–Heiles system [72], having the Hamiltonian function
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H2 = 1

2
(p2

x + p2
y) + 1

2
(x2 + y2) + x2 y − 1

3
y3, (14)

with equations of motion

ẋ =

⎡
⎢⎢⎣

ẋ
ẏ
ṗx

ṗy

⎤
⎥⎥⎦ = J4 · DH2 = J4 ·

⎡
⎢⎢⎣

x + 2xy
y + x2 − y2

px

py

⎤
⎥⎥⎦⇒

⎧⎪⎪⎨
⎪⎪⎩

ẋ = px

ẏ = py

ṗx = −x − 2xy
ṗy = −y − x2 + y2

, (15)

and (b) the 4-dimensional (4d) symplectic map

x1,n+1 = x1,n + x3,n

x2,n+1 = x2,n + x4,n

x3,n+1 = x3,n − ν sin(x1,n+1) − μ[1 − cos(x1,n+1 + x2,n+1)]
x4,n+1 = x4,n − κ sin(x2,n+1) − μ[1 − cos(x1,n+1 + x2,n+1)]

(mod 2π ), (16)

with parameters ν, κ , and μ. All variables are given (mod 2π ), so xi,n ∈ [π, π ),
for i = 1, 2, 3, 4. This map is a variant of Froeschlé’s 4d symplectic map [52] and
its behavior has been studied in [31, 123]. It is easily seen that its Jacobian matrix
satisfies Eq. (5).

2.3 Numerical Integration of Variational Equations

When dealing with Hamiltonian systems the variational equations (8) have to be
integrated simultaneously with the Hamilton equations of motion (2). Let us clarify
the issue by looking to a specific example. The variational equations of the 2D
Hamiltonian (14) are the following:

ẇ =

⎡
⎢⎢⎣

δ̇x
δ̇y
δ̇px

δ̇py

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0 0 1 0
0 0 0 1

−1 − 2y −2x 0 0
−2x −1 + 2y 0 0

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

δx
δy
δpx

δpy

⎤
⎥⎥⎦⇒

⎧⎪⎪⎨
⎪⎪⎩

δ̇x = δpx

δ̇y = δpy

δ̇px = (−1 − 2y)δx + (−2x)δy
δ̇py = (−2x)δx + (−1 + 2y)δy

.

(17)

This system of differential equations is linear with respect to δx , δy, δpx , δpy , but
it cannot be integrated independently of system (15) since the x and y variables
appear explicitly in it. Thus, if we want to follow the time evolution of an initial
deviation vector w(0) with respect to a reference orbit with initial condition x(0),
we are obliged to integrate simultaneously the whole set of differential equations
(15) and (17).
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A numerical scheme for integrating the variational equations (8), which exploits
their linearity and is particularly useful when we need to evolve more than one
deviation vectors is the following. Solving the Hamilton equations of motion (2)
by any numerical integration scheme we obtain the time evolution of the refer-
ence orbit (3). In practice this means that we know the values x(ti ) for ti = i Δt ,
i = 0, 1, 2, . . ., where Δt is the integration time step. Inserting this numerically
known solution to the variational equations (8) we end up with a linear system of
differential equations with constant coefficients for every time interval [ti , ti +Δt),
which can be solved explicitly.

For example, in the particular case of Hamiltonian (14), the system of variational
equations (17) becomes

δ̇x = δpx

δ̇y = δpy

δ̇px = [−1 − 2y(ti )] δx + [−2x(ti )] δy
δ̇py = [−2x(ti )] δx + [−1 + 2y(ti )] δy

, for t ∈ [ti , ti +Δt), (18)

which is a linear system of differential equations with constant coefficients and thus,
easily solved. In particular, (18) can by considered as the Hamilton equations of
motion corresponding to the Hamiltonian function:

HV (δx, δy, δpx , δpy) =
1

2

(
δp2

x + δp2
y

)+ 1

2

{
[1 + 2y(ti )] δx2 + [1 − 2y(ti )] δy2 + 2 [2x(ti )] δxδy

}
. (19)

The Hamiltonian formalism (19) of the variational equations (18) is a specific
example of a more general result. In the case of the usual Hamiltonian function

H (q,p) = 1

2

N∑
i=1

p2
i + V (q), (20)

with V (q) being the potential function, the variational equations (8) for the time
interval [ti , ti +Δt) take the form (see, e.g., [12])

ẇ =
[

δ̇q
δ̇p

]
=
[

0N IN

−D2V(q(ti )) 0N

]
·
[

δq
δp

]

with δq = (δq1(t), δq2(t), . . . , δqN (t)), δp = (δp1(t), δp2(t) . . . , δpN (t)), and

D2V(q(ti )) jk = ∂2V (q)

∂q j∂qk

∣∣∣∣
q(ti )

, j, k = 1, 2, . . . , N .

Thus, the tangent dynamics of (20) is represented by the Hamiltonian function (see,
e.g., [105])
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HV (δq, δp) = 1

2

N∑
j=1

δp2
i +

1

2

N∑
j,k

D2V(q(ti )) jkδq jδqk .

2.4 Tangent Dynamics of Symplectic Maps

In the case of symplectic maps, the dynamics on the tangent space, which is
described by the tangent map (11), cannot be considered separately from the phase
space dynamics determined by the map (4) itself. This is because the tangent map
depends explicitly on the reference orbit xn .

For example, the tangent map of the 4d map (16) is

δx1,n+1 = δx1,n + δx3,n

δx2,n+1 = δx2,n + δx4,n

δx3,n+1 = anδx1,n + bnδx2,n + (1 + an)δx3,n + bnδx4,n

δx4,n+1 = bnδx1,n + cnδx2,n + bnδx3,n + (1 + cn)δx4,n

, (21)

with

an = −ν cos(x1,n+1) − μ sin(x1,n+1 + x2,n+1)
bn = −μ sin(x1,n+1 + x2,n+1)
cn = −κ cos(x2,n+1) − μ sin(x1,n+1 + x2,n+1)

,

which explicitly depend on x1,n , x2,n , x3,n , x4,n . Thus, the evolution of a devia-
tion vector requires the simultaneous iteration of both the map (16) and the tangent
map (21).

3 Historical Introduction: The Early Days of LCEs

Prior to the discussion of the theory of the LCEs and the presentation of the various
algorithms for their computation, it would be interesting to go back in time and see
how the notion of LCEs, as well as the nowadays taken-for-granted techniques for
evaluating them, were formed.

The LCEs are asymptotic measures characterizing the average rate of growth
(or shrinking) of small perturbations to the orbits of a dynamical system, and their
concept was introduced by Lyapunov [96]. Since then they have been extensively
used for studying dynamical systems. As it has already been mentioned, one of
the basic features of chaos is the sensitive dependence on initial conditions and the
LCEs provide quantitative measures of response sensitivity of a dynamical system
to small changes in initial conditions. For a chaotic orbit at least one LCE is positive,
implying exponential divergence of nearby orbits, while in the case of regular orbits
all LCEs are zero. Therefore, the presence of positive LCEs is a signature of chaotic
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behavior. Usually the computation of only the mLCE χ1 is sufficient for determining
the nature of an orbit, because χ1 > 0 guarantees that the orbit is chaotic.

Characterization of the chaoticity of an orbit in terms of the divergence of nearby
orbits was introduced by Hénon and Heiles [72] and further used by several authors
(e.g., [48, 51, 52, 131, 22, 21]). In these studies two initial points were chosen
very close to each other, having phase space distance of about 10−7 − 10−6, and
were evolved in time. If the two initial points were located in a region of regular
motion their distance increased approximately linearly with time, while if they were
belonging to a chaotic region the distance exhibited an exponential increase in time
(Fig. 1).

Fig. 1 Typical behavior of the time evolution of the distance D between two initially close orbits
in the case of regular and chaotic orbits. The particular results are obtained for a 2D Hamiltonian
system describing a Toda lattice of two particles with unequal masses (see [22] for more details).
The initial Euclidian distance of the two orbits in the 4-dimensional phase space is D0 = 10−6.
D exhibits a linear (on the average) growth when the two orbits are initially located in a region of
regular motion (left panel), while it grows exponentially in the case of chaotic orbits (right panel).
The big difference in the values of D between the two cases is evident since the two panels have
the same horizontal (time) axis but different vertical ones. In particular, the vertical axis is linear
in the left panel and logarithmic in the right panel (after [22])

Although the theory of LCEs was applied to characterize chaotic motion by
Oseledec [102], quite some time passed until the connection between LCEs and
exponential divergence was made clear [10, 106]. It is worth mentioning that
Casartelli et al. [21] defined a quantity, which they called “stochastic parameter,”
in order to quantify the exponential divergence of nearby orbits, which was realized
afterward in [10] to be an estimator of the mLCE for t →∞.

So, the mLCE χ1 was estimated for the first time in [10], as the limit for
t → ∞ of an appropriate quantity X1(t), which was obtained from the evolution of
the phase space distance of two initially close orbits. In this paper some nowadays
well-established properties of X1(t) were discussed, like for example, the fact that
X1(t) tends to zero in the case of regular orbits following a power law ∝ t−1, while
it tends to nonzero values in the case of chaotic orbits (Fig. 2). The same algorithm
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Fig. 2 Evolution of X1(t) (denoted as kn) with respect to time t (denoted by n × τ ) in log–log
scale for several orbits of the Hénon–Heiles system (14). In the left panel X1(t) is computed for
five different regular orbits at different energies H2 (denoted as E) and it tends to zero following
a power law ∝ t−1. A dashed straight line corresponding to a function proportional to t−1 is also
plotted. In the right panel the evolution of X1(t) is plotted for three regular orbits (curves 1–3) and
three chaotic ones (curves 4–6) for H2 = 0.125. Note that the values of the initial conditions given
in the two panels correspond to q1 = x , q2 = y, p1 = px , p2 = py in (14) (after [10])

was immediately applied for the computation of the mLCE of a dissipative system,
namely the Lorenz system [99].

The next improvement of the computational algorithm for the evaluation of the
mLCE was introduced in [34], where the variational equations were used for the
time evolution of deviation vectors instead of the previous approach of the simulta-
neous integration of two initially close orbits. This more direct approach constituted
a significant improvement for the computation of the mLCE since it allowed the
use of larger integration steps, diminishing the real computational time and also
eliminated the problem of choosing a suitable initial distance between the nearby
orbits.

In [11] a theorem was formulated, which led directly to the development of a
numerical technique for the computation of some or even of all LCEs, based on
the time evolution of more than one deviation vectors, which are kept linearly inde-
pendent through a Gram-Schmidt orthonormalization procedure (see also [9]). This
method was explained in more detail in [119], where it was applied to the study of
the Lorenz system, and was also presented in [12], where it was applied to the study
of an ND Hamiltonian system with N varying from 2 to 10.

The theoretical framework, as well as the numerical method for the computation
of the maximal, some or even all LCEs were given in the seminal papers of Benettin
et al. [13, 14]. In [14] the complete set of LCEs was calculated for several different
Hamiltonian systems, including 4- and 6-dimensional maps. In Fig. 3 we show the
results of [14] concerning the 3D Hamiltonian system of [34]. The importance of the
papers of Benettin et al. [13, 14] is reflected by the fact that almost all methods for
the computation of the LCEs are more or less based on them. Immediately the ideas
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Fig. 3 Time evolution of appropriate quantities denoted by X (t)
p , p = 1, 2, 3, having, respectively,

as limits for t → ∞ the first three LCEs χ1, χ2, χ3, for two chaotic orbits (left panel) and one
regular orbit (right panel) of the 3D Hamiltonian system initially studied in [34] (see [14] for
more details). In both panels X (t)

3 tends to zero implying that χ3 = 0. This is due to the fact
that Hamiltonian systems have at least one vanishing LCE, namely the one corresponding to the
direction along the flow (this property is explained in Sect. 4.5). On the other hand, χ1 and χ2 seem
to get nonzero values (with χ1 > χ2) for chaotic orbits, while they appear to vanish for regular
orbits (after [14])

presented in [13, 14] were used for the computation of the LCEs for a variety of
dynamical systems like infinite-dimensional systems described by delay differential
equations [46], dissipative systems [44], conservative systems related to Celestial
Mechanics problems [53, 55], as well as for the determination of the LCEs from a
time series [144, 118].

4 Lyapunov Characteristic Exponents: Theoretical Treatment

In this section we define the LCEs of various orders presenting also the basic the-
orems which guarantee their existence and provide the theoretical background for
their numerical evaluation. In our presentation we basically follow the fundamental
papers of Oseledec [102] and of Benettin et al. [13] where all the theoretical results
of the current section are explicitly proved.

We consider a continuous or discrete dynamical system defined on a differen-
tiable manifold S. Let Φ t (x) denote the state at time t of the system which at time
t = 0 was at x (see (3) and (6) for the continuous and discrete case respectively). For
the action of Φ t over two successive time intervals t and s we have the following
composition law:

Φ t+s = Φ t ◦Φs .
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The tangent space at x is mapped onto the tangent space at Φ t (x) by the dif-
ferential dxΦ

t according to (7). The action of Φ t (x) is given by (9) for continuous
systems and by (12) for discrete ones. Thus, the action of dxΦ

t on a particular initial
deviation vector w of the tangent space is given by the multiplication of matrix Y(t)
for continuous systems or Yn for discrete systems with vector w. From (9) and (12)
we see that the action of dxΦ

t over two successive time intervals t and s satisfies
the composition law:

dxΦ
t+s = dΦ s

(x)Φ
t ◦ dxΦ

s . (22)

This equation can be written in the form

R(t + s, x) = R(t, Φs(x)) · R(s, x), (23)

where R(t, x) is the matrix corresponding to dxΦ
t . We note that since

Y(0) = Y0 = I2N we get dxΦ
0w = w and R(0, x) = I2N . A function R(t, x) satis-

fying relation (23) is called a multiplicative cocycle with respect to the dynamical
system Φ t .

Let S be a measure space with a normalized measure μ such that

μ(S) = 1 , μ
(
Φ tA

) = μ(A) (24)

for A ⊂ S. Suppose also that a smooth Riemannian metric ‖ ‖ is defined on S.
We consider the multiplicative cocycle R(t, x) corresponding to dxΦ

t and we are
interested in its asymptotic behavior for t →±∞. Since, as mentioned by Oseledec
[102], the case t →+∞ is analogous to the case t →−∞, we restrict our treatment
to the case t → +∞, where time is increasing. In order to clarify what we are
practically interested in let us consider a nonzero vector w of the tangent space TxS
at x. Then the quantity

λt (x) = ‖dxΦ
t w‖

‖w‖
is called the coefficient of expansion in the direction of w. If

lim sup
t→∞

1

t
ln λt (x) > 0

we say that exponential diverge occurs in the direction of w. Of course the basic
question we have to answer is whether the characteristic exponent (also called char-
acteristic exponent of order 1)

lim
t→∞

1

t
ln λt (x)

exists.
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We will answer this question in a more general framework without restrict-
ing ourselves to multiplicative cocycles. So, the results presented in the following
Sect. 4.1 are valid for a general class of matrix functions, a subclass of which con-
tains the multiplicative cocycles which are of more practical interest to us, since
they describe the time evolution of deviation vectors for the dynamical systems we
study.

4.1 Definitions and Basic Theorems

Let At be an n × n matrix function defined either on the whole real axis or on the
set of integers, such that A0 = In , for each time t the value of function At is a
nonsingular matrix and ‖At‖ the usual 2-norm of At .2 In particular, we consider
only matrices At satisfying

max
{‖At‖, ‖A−1

t ‖} ≤ ect (25)

with c > 0 a suitable constant.

Definition 4. Considering a matrix function At as above and a nonzero vector w of
the Euclidian space R

n the quantity

χ (At ,w) = lim sup
t→∞

1

t
ln ‖At w‖ (26)

is called the 1-dimensional Lyapunov Characteristic Exponent
or the Lyapunov Characteristic Exponent of order 1 (1-LCE)
of At with respect to vector w.

For simplicity we will usually refer to 1-LCEs as LCEs.
We note that the value of the norm ‖w‖ does not influence the value of χ (At ,w).

For example, considering a vector βw, with β ∈ R a nonzero constant, instead of w
in Definition 4, we get the extra term ln |β|/t (with | | denoting the absolute value)
in (26) whose limiting value for t → ∞ is zero and thus does not change the value
of χ (At ,w). More importantly, the value of the LCE is independent of the norm
appearing in (26). This can be easily seen as follows: Let us consider a second norm
‖ ‖′ satisfying the inequality

β1‖w‖ ≤ ‖w‖′ ≤ β2‖w‖

2 The 2-norm ‖A‖ of an n×n matrix A is induced by the 2-norm of vectors, i.e., the usual Euclidean
norm ‖x‖ = (∑n

i=1 x2
i

)1/2
, by

‖A‖ = max
x �=0

‖Ax‖
‖x‖ ,

and is equal to the largest eigenvalue of matrix
√

ATA.
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for some positive real numbers β1, β2, and for all vectors w. Such norms are called
equivalent (see, e.g., [73, Sect. 5.4.7]). Then, by the above-mentioned argument it is
easily seen that the use of norm ‖ ‖′ in (26) leaves unchanged the value of χ (At ,w).
Since all norms of finite-dimensional vector spaces are equivalent, we conclude that
the LCEs do not depend on the chosen norm.

Let wi , i = 1, 2, . . . , p be a set of linearly independent vectors in R
n , E p be the

subspace generated by all wi and volp(At , E p) be the volume of the p-parallelogram
having as edges the p vectors At wi . This volume is computed as the norm of the
wedge product of these vectors (see Appendix for the definition of the wedge prod-
uct and the actual evaluation of the volume)

volp(At , E p) = ‖At w1 ∧ At w2 ∧ · · · ∧ At wp‖.

Let also volp(A0, E p) be the volume of the initial p-parallelogram defined by all
wi , since A0 is the identity matrix. Then the quantity

λt (E p) = volp(At , E p)

volp(A0, E p)

is called the coefficient of expansion in the direction of E p and it depends only on
E p and not on the choice of the linearly independent set of vectors. Obviously for
an 1-dimensional subspace E1 the coefficient of expansion is ‖At w1‖/‖w1‖. If the
limit

lim
t→∞

1

t
ln λt (E p)

exits it is called the characteristic exponent of order p in the direction of E p.

Definition 5. Considering the linearly independent set wi , i = 1, 2, . . . , p and the
corresponding subspace E p of R

n as above, the p-dimensional Lyapunov
Characteristic Exponent or the Lyapunov Characteristic
Exponent of order p (p-LCE) of At with respect to subspace E p is
defined as

χ (At , E p) = lim sup
t→∞

1

t
ln volp(At , E p). (27)

Similarly to the case of the 1-LCE, the value of the initial volume volp(A0, E p), as
well as the used norm, do not influence the value of χ (At , E p).

From (25) and the Hadamard inequality (see, e.g., [102]), according to which the
Euclidean volume of a p-parallelogram does not exceed the product of the lengths
of its sides, we conclude that the LCEs of (26) and (27) are finite.

From the definition of the LCE it follows that

χ (At , c1w1 + c2w2) ≤ max {χ (At ,w1), χ (At ,w2)}
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for any two vectors w1,w2 ∈ R
n and c1, c2 ∈ R with c1, c2 �= 0, while the

Hadamard inequality implies that if wi , i = 1, 2, . . . , n is a basis of R
n then

n∑
i=1

χ (At ,wi ) ≥ lim sup
t→∞

1

t
ln | det At |, (28)

where det At is the determinant of matrix At .
It can be shown that for any r ∈ R the set of vectors {w ∈ R

n : χ (At ,w) ≤ r} is
a vector subspace of R

n and that the function χ (At ,w) with w ∈ R
n , w �= 0 takes

at most n different values, say

ν1 > ν2 > · · · > νs with 1 ≤ s ≤ n. (29)

For the subspaces

Li =
{
w ∈ R

n : χ (At ,w) ≤ νi
}
, (30)

we have

R
n = L1 ⊃ L2 ⊃ · · · ⊃ Ls ⊃ Ls+1

def= {0} , (31)

with Li+1 �= Li and χ (At ,w) = νi if and only if w ∈ Li \ Li+1 for i = 1, 2, . . . , s.
So in descending order each LCE “lives” in a space of dimensionality less than
that of the preceding exponent. Such a structure of linear spaces with decreasing
dimension, each containing the following one, is called a filtration.

Definition 6. A basis wi , i = 1, 2, . . . , n of R
n is called normal if

∑n
i=1 χ (At ,wi )

attains a minimum at this basis. In other words, the basis wi , is a normal basis
if

n∑
i=1

χ (At ,wi ) ≤
n∑

i=1

χ (At , gi ),

where gi , i = 1, 2, . . . , n is any other basis of R
n .

A normal basis wi , i = 1, 2, . . . , n is not unique but the numbers χ (At ,wi ) depend
only on At and not on the particular normal basis and are called the LCEs of function
At . By a possible permutation of the vectors of a given normal basis we can always
assume that χ (At ,w1) ≥ χ (At ,w2) ≥ · · · ≥ χ (At ,wn).

Definition 7. Let wi , i = 1, 2, . . . , n be a normal basis of R
n and

χ1 ≥ χ2 ≥ · · · ≥ χn , with χi ≡ χ (At ,wi ), i = 1, 2, . . . , n, the LCEs of these
vectors. Assume that value νi , i = 1, 2, . . . , s appears exactly ki = ki (νi ) > 0
times among these numbers. Then ki is called the multiplicity of value νi and
the collection (νi , ki ) i = 1, 2, . . . , s is called the spectrum of LCEs.
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In order to clarify the used notation we stress that χi , i = 1, 2, . . . , n are
the n (possibly nondistinct) LCEs, satisfying χ1 ≥ χ2 ≥ · · · ≥ χn , while
νi , i = 1, 2, . . . , s represent the s (1 ≤ s ≤ n), different values the LCEs have,
with ν1 > ν2 > · · · > νs .

Definition 8. The matrix function At is called regular as t → ∞ if for each
normal basis wi , i = 1, 2, . . . , n it holds that

n∑
i=1

χ (At ,wi ) = lim inf
t→∞

1

t
ln | det At |,

which, due to (28) leads to

lim inf
t→∞

1

t
ln | det At | = lim sup

t→∞
1

t
ln | det At |

guaranteeing that the limit

lim
t→∞

1

t
ln | det At |

exists, is finite, and is equal to

lim
t→∞

1

t
ln | det At | =

n∑
i=1

χ (At ,wi ) =
s∑

i=1

kiνi .

We can now state a very important theorem for the LCEs:

Theorem 1. If the matrix function At is regular then the LCEs of all orders are given
by (26) and (27) where the lim sup

t→∞
is substituted by lim

t→∞

χ (At ,w) = lim
t→∞

1

t
ln ‖At w‖ (32)

χ (At , E p) = lim
t→∞

1

t
ln volp(At , E p). (33)

In particular, for any p-dimensional subspace E p ⊆ R
n we have

χ (At , E p) =
p∑

j=1

χi j , (34)

with a suitable sequence 1 ≤ i1 ≤ i2 ≤ · · · ≤ i p ≤ n.
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The part of the theorem concerning equations (32) and (33) was proved by Oseledec
in [102], while (34), although was not explicitly proved in [102], can be considered
as a rather easily proven byproduct of the results presented there. Actually, the valid-
ity of (34) was shown in [13].

4.2 Computing LCEs of Order 1

Let us now discuss how we can use Theorem 1 for the numerical computation of
LCEs, starting with the computation of LCEs of order 1.

As we have already mentioned in (29), the LCE takes at most n different values
νi , i = 1, 2, . . . , s, 1 ≤ s ≤ n. If we could know a priori the sequence (31) of
subspaces Li i = 1, 2, . . . , s of R

n we would, in principle, be able to compute the
values νi of all LCEs. This could be done by taking an initial vector wi ∈ Li \ Li+1

and compute

νi = lim
t→∞

1

t
ln ‖At wi‖ , i = 1, 2, . . . , s. (35)

Now apart from L1 = R
n all the remaining subspaces Li , i = 2, 3, . . . , s have

positive codimension codim(Li ) (= dim R
n − dim Li > 0) and thus, vanishing

Lebesgue measure. Then a random choice of w ∈ R
n would lead to the computation

of χ1 from (35), because, in principle w will belong to L1 and not to the subspaces
Li i = 2, . . . , s. Let us consider a simple example in order to clarify this statement.

Suppose that L1 is the usual 3-dimensional space R
3, L2 ⊂ L1 is a partic-

ular 2-dimensional plane of R
3, e.g., the plane z = 0, L3 ⊂ L2 is a particu-

lar 1-dimensional line, e.g., the x axis (Fig. 4a) and the corresponding LCEs are
χ1 > χ2 > χ3 with multiplicities k1 = k2 = k3 = 1. For this case we have
dim L1 = 3, dim L2 = 2, dim L3 = 1 and codim(L1) = 0, codim(L2) = 1,
codim(L3) = 2. Concerning the measures μ of these subspaces of R

3, it is obvi-
ous that μ(L2) = μ(L3) = 0, since the measure of a surface or of a line in the
3-dimensional space R

3 is zero.
If we randomly choose a vector w ∈ R

3 it will belong to L1 and not to L2,
i.e., having its z coordinate different from zero and thus, (35) would lead to the
computation of the mLCE χ1. Vector w1 in Fig. 4(b) represents such a random
choice. In order to compute χ2 from (35) we should choose vector w not ran-
domly but in a specific way. In particular, it should belong to L2 but not to L3,
so its z coordinate should be equal to zero. Thus this vector should have the form
w = (w1, w2, 0) with w1, w2 ∈ R, w2 �= 0, like vector w2 in Fig. 4b. Our choice
will become even more specific if we would like to compute χ3 because in this case
w should be of the form w = (w1, 0, 0) �= 0 with w1 ∈ R. Vector w3 of Fig. 4b is a
choice of this kind.

From this example it becomes evident that a random choice of vector w in (35)
will lead to the computation of the largest LCE χ1 with probability one. One more
comment concerning the numerical implementation of (35) should be added here.
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Fig. 4 (a) A schematic representation of the sequence of subspaces (31) where L1 identifies with
R

3, L2 ⊂ L1 is represented by the xy plane and the x axis is considered as the final subspace
L3 ⊂ L2. (b) A random choice of a vector in L1 ≡ R

3 will result with probability one to a vector
belonging to L1 and not to L2, like vector w1. Vectors w2, w3 belonging, respectively, to L2 \ L3

and to L3 are not random since their coordinates should satisfy certain conditions. In particular,
the z coordinate of w2 should be zero, while both the z and y coordinate of w3 should vanish. The
use of w1, w2, w3 in (35) leads to the computation of χ1, χ2, and χ3, respectively

Even if in some special examples one could happen to know a priori the subspaces
Li i = 1, 2, . . . , s, so that one could choose w ∈ Li \ Li+1 with i �= 1 then the
computational errors would eventually lead to the numerical computation of χ1.
Such an example was presented in [14].

4.3 Computing LCEs of Order p > 1

Let us now turn our attention to the computation of p-LCEs with p > 1. Equation
(34) of Theorem 1 actually tells us that the p-LCE χ (At , E p) can take at most(

n
p

)
distinct values, i.e., as many as all the possible sums of p 1-LCEs out of n

are. Now, as the choice of a random vector w ∈ R
n , or in other words, of a random

1-dimensional subspace of R
n produced by w, leads to the computation of the max-

imal 1-LCE, the random choice of a p-dimensional subspace E p of R
n , or equiva-

lently the random choice of p linearly independent vectors wi i = 1, 2, . . . , p, leads
to the computation of the maximal p-LCE (p-mLCE) which is equal to the sum of
the p largest 1-LCEs

χ (At , E p) =
p∑

i=1

χi . (36)
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This relation was formulated explicitly in [11, 9] and proved in [13] but was implic-
itly contained in [102]. The practical importance of (36) was also clearly explained
in [119]. Benettin et al. [13] gave a more rigorous form to the notion of the random
choice of E p, which is essential for the derivation of (36), by introducing a con-
dition that subspace E p should satisfy. They named this condition Condition R (at
random). According to Condition R a p-dimensional space E p ⊂ R

n is chosen at
random if for all j = 2, 3, . . . , s we have

dim(E p ∩ L j ) = max

{
0, p −

j−1∑
i=1

ki

}
, (37)

where L j belongs to the sequence of subspaces (31) and ki is the multiplicity of the
LCE νi (Definition 7).

In order to clarify these issues let us consider again the example presented in
Fig. 4, where we have three distinct values for the 1-LCEs χ1 > χ2 > χ3 with
multiplicities k1 = k2 = k3 = 1. In this case the 2-LCE can take one of the three
possible values χ1 + χ2, χ2 + χ3, χ1 + χ3, while the 3-LCE takes only one possible
value, namely χ1 + χ2 + χ3.

The computation of the 2-LCE requires the choice of two linearly indepen-
dent vectors w1, w2 and the application of (33). The two vectors w1, w2 define a
2-dimensional plane E2 in R

3 and χ (At , E2) practically measures the time rate of
the coefficient of expansion of the surface of the parallelogram having as edges the
vectors At w1, At w2.

By choosing the two vectors w1, w2 randomly we define a random plane E2 in
R

3 which intersects the subspace L2 (plane xy) along a line, i.e., dim(E2 ∩ L2) = 1
and the subspace L3 (x axis) at a point, i.e., dim(E2 ∩ L3) = 0 (Fig. 5a). This
random choice of plane E2 satisfies Condition R (37) and thus, (33) leads to the
computation of the 2-mLCE, namely χ1 + χ2. This result can be also understood
in the following way. Plane E2 in Fig. 5a can be considered to be spanned by two
vectors w1, w2 such that w1 ∈ L1 but not in its subspace L2 and w2 ∈ L2 but not in
its subspace L3. Then the expansion of w1 ∈ L1 \ L2 is determined by the LCE χ1

and the expansion of w2 ∈ L2 \ L3 by the LCE χ2. These 1-dimensional expansion
rates result to an expansion rate equal to χ1 + χ2 for the surface defined by the two
vectors.

Other more carefully designed choices of the E2 subspace lead to the computa-
tion of the other possible values of the 2-LCE. If for example w1 ∈ L2 \ L3 and
w2 ∈ L3 (Fig. 5b) we have E2 = L2 with dim(E2 ∩ L2) = 2 and dim(E2 ∩ L3) = 1.
In this case the expansion of w1 is determined by the LCE χ2 and of w2 by χ3, and
so the computed 2-LCE is χ2 + χ3. Finally, a choice of E2 of the form presented
in Fig. 5c leads to the computation of χ1 + χ3. In this case the plane E2 is defined
by w1 ∈ L1 \ L2 and w2 ∈ L3 and intersects subspaces L2 and L3 along the line
corresponding to L3, i.e., dim(E2 ∩ L2) = 1 and dim(E2 ∩ L3) = 1. It can be easily
checked that for the last two choices of E2 (Fig. 5b, c) for which the computed
2-LCE does not take its maximal possible value, Condition R (37) is not satisfied,
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Fig. 5 Possible choices of the 2-dimensional space E2 for the computation of the 2-LCE in the
example of Fig. 4, where R

3 is considered as the tangent space of a hypothetical dynamical
system. In each panel the chosen “plane” E2 is drawn, as well as one of its possible basis con-
stituted of vectors w1, w2. (a) A random choice of E2 leads to a plane intersecting L2 along
line ε (dim(E2 ∩ L2) = 1) and L1 at point A (dim(E2 ∩ L3) = 0). In this case (33) gives
χ(At , E2) = χ1 + χ2. More carefully made choices of E2 (which are obviously not made at
random) results to configurations leading to the computation of χ2 + χ3 (b) and χ1 + χ3 (c) from
(33). In these cases E2 does not satisfy Condition R (37) since dim(E2∩L2) = 2, dim(E2∩L3) = 1
in (b) and dim(E2 ∩ L2) = 1, dim(E2 ∩ L3) = 1 in (c)

as one should have expected from the fact that these choices correspond to carefully
designed configurations and not to a random process.

Similarly to the case of the computation of the 1-LCEs we note that, even if in
some exceptional case one could know a priori the subspaces Li i = 1, 2, . . . , s, so
that one could choose wi i = 1, 2, . . . , p to span a particular subspace E p in order to
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compute a specific value of the p-LCE, smaller than
∑p

i=1 χi (like in Fig. 5b c), the
inevitable computational errors would eventually lead to the numerical computation
of the maximal possible value of the p-LCE.

Summarizing we point out that the practical implementation of Theorem 1 guar-
antees that a random choice of p initial vectors wi i = 1, 2, . . . , p with 1 ≤ p ≤ n
generates a space E p which satisfies Condition R (37) and leads to the actual com-
putation of the corresponding p-mLCE, namely χ1 +χ2 + . . .+χp. This statement,
which was originally presented in [11, 9], led to the standard algorithm for the com-
putation of all LCEs presented in [14]. This algorithm is analyzed in Sect. 6.1.

4.4 The Multiplicative Ergodic Theorem

After presenting results concerning the existence and the computation of the LCEs
of all orders for a general matrix function At , let us restrict our study to the case
of multiplicative cocycles R(t, x), which are matrix functions satisfying (23). The
multiplicative cocycles arise naturally in discrete and continuous dynamical systems
as was explained in the beginning of Sect. 4.

In particular, we consider the multiplicative cocycle dxΦ
t which maps the tangent

space at x ∈ S to the tangent space at Φ t (x) ∈ S for a dynamical system defined on
the differentiable manifold S. We recall that S is a measure space with a normalized
measure μ and that Φ t is a diffeomorphism on S, i.e., Φ t is a measurable bijection
of S which preserves the measure μ (24) and whose inverse is also measurable.
We remark that in measure theory we disregard sets of measure 0. In this sense Φ t

is called measurable if it becomes measurable upon disregarding from S a set of
measure 0. Quite often we will use the expression “for almost all x with respect to
measure μ” for the validity of a statement, implying that the statement is true for all
points x with the possible exception of a set of points with measure 0.

A basic property of the multiplicative cocycles is their regularity, since Theorem
1 guarantees the existence of characteristic exponents and the finiteness of the LCEs
of all orders for regular multiplicative cocycles. Thus, it is important to determine
specific conditions that multiplicative cocycles should fulfill in order to be regular.
Such conditions were first provided by Oseledec [102] who also formulated and
proved the so-called Multiplicative Ergodic Theorem (MET), which is often referred
as Oseledec’s theorem.

The MET gives information about the dynamical structure of a multiplicative
cocycle R(t, x) and its asymptotic behavior for t → ∞. The application of the
MET for the particular multiplicative cocycle dxΦ

t provides the theoretical frame-
work for the computation of the LCEs for dynamical systems. The MET is one of
the milestones in the study of ergodic properties of dynamical systems and it can
be considered as a sort of a spectral theorem for random matrix products [113].
As a testimony to the importance of this theorem one can find several alternative
proofs for it in the literature. The original proof of Oseledec [102] applies to both
continuous and discrete systems. In view to the application to algebraic groups,
Raghunathan [108] devised a simple proof of the MET, which nevertheless could
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not guarantee the finiteness of all LCEs. Although Raghunathan’s results apply
only to maps, an extension to flows, following the ideas of Oseledec, was given by
Ruelle [114]. Benettin et al. [13] proved a somewhat different version of the theorem
being mainly interested in its application to Hamiltonian flows and symplectic maps.
Alternative proofs can also be found in [76, 141].

In [102] Oseledec proved that a multiplicative cocycle R(t, x) is regular and thus,
the MET is applicable to it, if it satisfies the condition

sup
|t |≤1

ln+ ‖R±(t, x)‖ ∈ L1(S, μ)3, (38)

where ln+ a = max {0, ln a}. From (38) we obtain the estimate

‖R(t, x)‖ ≤ eJ (x)|t |, (39)

for t →±∞ for almost all x with respect to μ, where J (x) is a measurable function.
From (39) it follows that R(t, x), considered as a function of t for fixed x, satisfies
(25). Benettin et al. [13] considered a slightly different version of the MET with
respect to the one presented in [102]. Their version was adapted to the framework of
a continuous or discrete dynamical system with Φ t being a diffeomorphism of class
C1, i.e., both Φ t and its inverse are continuously differentiable. They formulated the
MET for the particular multiplicative cocycle dxΦ

t , which they proved to be regular.
Since our presentation is mainly focused on autonomous Hamiltonian systems and
symplectic maps we will also state the MET for the specific cocycle dxΦ

t . The
version of the MET we present is mainly based on [102, 114, 13] and combines
different formulations of the theorem given by various authors over the years.

Theorem 2 (Multiplicative Ergodic Theorem—MET). Consider a dynamical sys-
tem as follows: Let its phase space S be an n-dimensional compact manifold with a
normalized measure μ, μ(S) = 1, and a smooth Riemannian metric ‖ ‖. Consider
also a measure–preserving diffeomorphism Φ t of class C1 satisfying

Φ t+s = Φ t ◦Φs ,

with t denoting time and having real (continuous system) or integer (discrete system)
values. Then for almost all x ∈ S, with respect to measure μ we have:

1. The family of multiplicative cocycles dxΦ
t : TxS → T Φ

t
(x)S , where TxS

denotes the tangent space of S at point x, is regular.
2. The LCEs of all orders exist and are independent of the choice of the Riemannian

metric of S.

3 We recall that a measurable function f : S → R (or C) of the measure space (S, μ) belongs to
the space L1(S, μ) if its absolute value has a finite Lebesgue integral, i.e.,∫

| f |dμ < ∞.
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In particular, for any w ∈ TxS the finite limit

χ (x,w) = lim
t→∞

1

t
ln ‖dxΦ

t w‖ (40)

exists and defines the LCE of order 1 (1-LCE). There exists at least one normal
basis vi , i = 1, 2, . . . , n of TxS for which the corresponding (possibly nondis-
tinct) 1-LCEs χi (x) = χ (x, vi ) are ordered as

χ1(x) ≥ χ2(x) ≥ · · · ≥ χn(x). (41)

Assume that the value νi (x), i = 1, 2, . . . , s with s = s(x), 1 ≤ s ≤ n appears
exactly ki (x) = ki (x, νi ) > 0 times among these numbers. Then the spectrum of
LCEs (νi (x), ki (x)), i = 1, 2, . . . , s is a measurable function of x, and as w �= 0
varies in TxS, χ (x,w) takes one of these s different values

ν1(x) > ν2(x) > · · · > νs(x). (42)

It also holds

s∑
i=1

ki (x)νi (x) = lim
t→∞

1

t
ln | det dxΦ

t |. (43)

For any p-dimensional (1 ≤ p ≤ n) subspace E p ⊆ TxS, generated by a
linearly independent set wi , i = 1, 2, . . . , p the finite limit

χ (x, E p) = lim
t→∞

1

t
ln volp(dxΦ

t , E p), (44)

where volp(dxΦ
t , E p) is the volume of the p-parallelogram having as edges the

vectors dxΦ
t wi , exists, and defines the LCE of order p (p-LCE). The value of

χ (x, E p) is equal to the sum of p 1-LCEs χi (x), i = 1, 2, . . . , n.
3. The set of vectors

Li (x) = {w ∈ TxS : χ (x,w) ≤ νi (x)} , 1 ≤ i ≤ s

is a linear subspace of TxS satisfying

TxS= L1(x) ⊃ L2(x) ⊃ · · · ⊃ Ls(x) ⊃ Ls+1(x)
def= {0}. (45)

If w ∈ Li (x) \ Li+1(x) then χ (x,w) = νi (x) for i = 1, 2, . . . , s. The multiplicity
ki (x) of values νi (x) is given by ki (x) = dim Li (x) − dim Li+1(x).

4. The symmetric positive-defined matrix

Λx = lim
t→∞

(
YT(t) · Y(t)

)1/2t
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exists. Y(t) is the matrix corresponding to dxΦ
t and is defined by (10) and (13)

for continuous and discrete dynamical systems, respectively. The logarithms of
the eigenvalues of Λx are the s distinct 1-LCEs (42) of the dynamical system.
The corresponding eigenvectors are orthogonal (since Λx is symmetric), and for
the corresponding eigenspaces V1(x), V2(x), . . . , Vs(x) we have

ki (x) = dim Vi (x) , Li (x) =
s⊕

r=i

Vr (x) for i = 1, 2, . . . , s.

Thus, TxS is decomposed as

T xS = V1(x) ⊕ V2(x) ⊕ · · · ⊕ Vs(x),

and for every nonzero vector w ∈ Vi (x), i = 1, 2, . . . , s, we get

χ (x,w) = νi (x).

A short remark is necessary here. The regularity of dxΦ
t , which guarantees the

validity of (40) and (44) and the finiteness of the LCEs of all orders, should not be
confused with the regular nature of orbits of the dynamical system. Regular orbits
have all their LCEs equal to zero (see also the discussion in Sect. 5.3).

Benettin et al. [11, 13] have formulated also the following theorem which pro-
vides the theoretical background for the numerical algorithm they presented in [14]
for the computation of all LCEs.

Theorem 3. Under the assumptions of the MET, the p-LCE of any p-dimensional
subspace E p ⊆ TxS satisfying Condition R (37) is equal to the sum of the p largest
1-LCEs (41):

χ (x, E p) = lim
t→∞

1

t
ln volp(dxΦ

t , E p) =
p∑

i=1

χi (x). (46)

4.5 Properties of the Spectrum of LCEs

Let us now turn our attention to the structure of the spectrum of LCEs for ND
autonomous Hamiltonian systems and for 2Nd symplectic maps, which are the main
dynamical systems we are interested in. Such systems preserve the phase space
volume, and thus, the r. h. s. of (43) vanishes. So for the sum of all the 1-LCEs we
have

2N∑
i=1

χi (x) = 0. (47)
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The symplectic nature of these systems gives indeed more. It has been proved in
[13] that the spectrum of LCEs consists of pairs of values having opposite signs

χi (x) = −χ2N−i+1(x) , i = 1, 2, . . . , N . (48)

Thus, the spectrum of LCEs becomes

χ1(x) ≥ χ2(x) ≥ · · · ≥ χN (x) ≥ −χN (x) ≥ · · · ≥ −χ2(x) ≥ −χ1(x).

For autonomous Hamiltonian flows we can say something more. Let us first
recall that for a general differentiable flow on a compact manifold without stationary
points at least one LCE must vanish [13, 70]. This follows from the fact that, in the
direction along the flow a deviation vector grows only linearly in time. So, in the
case of a Hamiltonian flow, due to the symmetry of the spectrum of LCEs (48), at
least two LCEs vanish, i.e.,

χN (x) = χN+1(x) = 0,

while the presence of any additional independent integral of motion leads to the
vanishing of another pair of LCEs.

Let us now study the particular case of a periodic orbit of period T , such that
ΦT (x) = x, following [9, 12]. In this case dxΦ

T is a linear operator on the tangent
space TxS so that for any deviation vector w(0) ∈ TxS we have

w(T ) = Y · w(0), (49)

where Y is the constant matrix corresponding to dxΦ
T . Suppose that Y has 2N

(possibly complex) eigenvalues λi , i = 1, 2, . . . , 2N , whose magnitudes can be
ordered as

|λ1| ≥ |λ2| ≥ . . . ≥ |λ2N |.

Let ŵi , i = 1, 2, . . . , 2N , denote the corresponding unitary eigenvectors. Then for
w(0) = ŵi (49) implies

w(kT ) = λk
i ŵi , k = 1, 2, . . . (50)

and so we conclude from (40) that

χ (x, ŵi ) = 1

T
ln |λi | = χi (x), i = 1, 2, . . . , 2N .

Furthermore for a deviation vector

w(0) = c1ŵ1 + c2ŵ2 + . . .+ c2N ŵ2N
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with ci ∈ R, i = 1, 2, . . . , 2N , it follows from (50) that the first nonvanishing
coefficient ci eventually dominates the evolution of w(t) and we get χ (x,w) = χi .
In this case we can define a filtration similar to the one presented in (45) by defin-
ing L1 = [ŵ1, ŵ2, . . . , ŵ2N ] = TxS, L2 = [ŵ2, . . . , ŵ2N ], . . . , L2N = [ŵ2N ],
L2N+1 = [0], where [ ] denotes the linear space spanned by vectors ŵ1, ŵ2, . . . , ŵ2N

and so on. It becomes evident that a random choice of an initial deviation vector
w(0) ∈ TxS will lead to the computation of the mLCE χ1(x) since, in general,
w(0) ∈ L1 \ L2.

So, in the case of an unstable periodic orbit where |λ1| > 1 we get χ1(x) >

0, which implies that nearby orbits diverge exponentially from the periodic one.
This orbit is not called chaotic, although its mLCE is larger than zero, but simply
“unstable”. In fact, unstable periodic orbits exist also in integrable systems. Since
the measure of periodic orbits in a general dynamical system has zero measure,
periodic orbits (stable and unstable) are rather exceptional.

In the general case of a nonperiodic orbit we are no more allowed to use con-
cepts as eigenvectors and eigenvalues because the linear operator dxΦ

t maps TxS
into T Φ

t
(x)S �= TxS, while eigenvectors are intrinsically defined only for lin-

ear operators of a linear space into itself. Nevertheless, in the case of nonperi-
odic orbits the MET proves the existence of the LCEs and of filtration (45). In
a way, the MET provides an extension of the linear stability analysis of periodic
orbits to the case of nonperiodic ones, although one should always keep in mind
that the LCEs are related to the real and positive eigenvalues of the symmetric,
positive-defined matrix YT(t) · Y(t) [63, 98]. On the other hand, linear stability
analysis involves the computation of the eigenvalues of the nonsymmetric matrix
Y(t), which solves the linearized equations of motion (10) for Hamiltonian flows
or (13) for maps. These eigenvalues are real or come in pairs of complex conju-
gate pairs and, in general, they are not directly related to the LCEs which are real
numbers.

An important property of the LCEs is that they are constant in a connected chaotic
domain. This is due to the fact that every nonperiodic orbit in the same connected
chaotic domain covers densely this domain, thus, two different orbits of the same
domain are in a sense dynamically equivalent. The unstable periodic orbits in this
chaotic domain have in general LCEs that are different from the constant LCEs of
the nonperiodic orbits. This is due to the fact that the periodic orbits do not visit
the whole domain, thus, they cannot characterize its dynamical behavior. In fact,
different periodic orbits have different LCEs.

5 The Maximal LCE

From this point on, in order to simplify our notation, we will not explicitly write the
dependence of the LCEs on the specific point x ∈ S. So, in practice, considering
that we are referring to a specific point x ∈ S, we denote by χi the LCEs of order 1
and by χ

(p)
i the LCEs of order p.



92 Ch. Skokos

For the practical determination of the chaotic nature of orbits a numerical com-
putation of the mLCE χ1 can be employed. If the studied orbit is regular χ1 = 0,
while if it is chaotic χ1 > 0, implying exponential divergence of nearby orbits. The
computation of the mLCE has been used extensively as a chaos indicator after the
introduction of numerical algorithms for the determination of its value at late 1970s
[10, 99, 8, 34, 14].

Apart from using the mLCE as a criterion for the chaoticity or the regularity of
an orbit its value also attains a “physical” meaning and defines a specific timescale
for the considered dynamical system. In particular, the inverse of the mLCE, which
is called Lyapunov time,

tL = 1

χ1
, (51)

gives an estimate of the time needed for a dynamical system to become chaotic and
in practice measures the time needed for nearby orbits of the system to diverge by e
(see e.g, [30, p. 508]).

5.1 Computation of the mLCE

The mLCE can be computed by the numerical implementation of (40). In Sect. 4.2
we showed that a random choice of the initial deviation vector w(0) ∈ TxS leads to
the numerical computation of the mLCE. We recall that the deviation vector w(t) at
time t > 0 is determined by the action of the operator dxΦ

t on the initial deviation
vector w(0) according to (7)

w(t) = dxΦ
t w(0). (52)

This equation represents the solution of the variational equations (8) or the evolution
of a deviation vector under the action of the tangent map (11) and takes the form
(9) and (12), respectively. We emphasize that, both the variational equations and the
equations of the tangent map are linear with respect to the tangent vector w, i.e.,

dxΦ
t (a w) = a dxΦ

t w, for any a ∈ R. (53)

In order to evaluate the mLCE of an orbit with initial condition x(0), one has
to follow simultaneously the time evolution of the orbit itself and of a deviation
vector w from this orbit with initial condition w(0). In the case of a Hamiltonian
flow (continuous time) we solve simultaneously the Hamilton equations of motion
(2) for the time evolution of the orbit and the variational equations (8) for the time
evolution of the deviation vector. In the case of a symplectic map (discrete time)
we iterate the map (4) for the evolution of the orbit simultaneously with the tangent
map (11), which determines the evolution of the tangent vector. The mLCE is then
computed as the limit for t →∞ of the quantity
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X1(t) = 1

t
ln
‖dx(0)Φ

t w(0)‖
‖w(0)‖ = 1

t
ln

‖w(t)‖
‖w(0)‖ , (54)

often called finite time mLCE. So, we have

χ1 = lim
t→∞ X1(t). (55)

The direct numerical implementation of (54) and (55) for the evaluation of χ1

meets a severe difficulty. If, for example, the orbit under study is chaotic, the norm
‖w(t)‖ increases exponentially with increasing time t , leading to numerical over-
flow, i.e., ‖w(t)‖ attains very fast extremely large values that cannot be represented
in the computer. This difficulty can be overcome by a procedure which takes advan-
tage of the linearity of dxΦ

t (53) and of the composition law (22). Fixing a small
time interval τ we express time t with respect to τ as t = kτ , k = 1, 2, . . .. Then
for the quantity X1(t) we have

X1(kτ ) = 1

kτ
ln
‖w(kτ )‖
‖w(0)‖

= 1

kτ
ln

( ‖w(kτ )‖
‖w((k − 1)τ )‖

‖w((k − 1)τ )‖
‖w((k − 2)τ )‖ · · ·

‖w(2τ )‖
‖w(τ )‖

‖w(τ )‖
‖w(0)‖

)

= 1

kτ

k∑
i=1

ln
‖w(iτ )‖

‖w((i − 1)τ )‖ ⇒

X1(kτ ) = 1

kτ

k∑
i=1

ln
‖dx(0)Φ

iτ w(0)‖
‖dx(0)Φ

(i−1)τ w(0)‖ . (56)

Denoting by D0 the norm of the initial deviation vector w(0)

D0 = ‖w(0)‖,

we get for the evolved deviation vector at time t = kτ

dx(0)Φ
iτ w(0) = dx(0)Φ

τ+(i−1)τ w(0)
(22)= d

Φ (i−1)τ
(x(0))

Φτ
(
dx(0)Φ

(i−1)τw(0)
)

(53)= ‖dx(0)Φ
(i−1)τ w(0)‖
D0

d
Φ (i−1)τ

(x(0))
Φτ

(
dx(0)Φ

(i−1)τw(0)

‖dx(0)Φ
(i−1)τ w(0)‖ D0

)
⇒

dx(0)Φ
iτ w(0)

‖dx(0)Φ
(i−1)τ w(0)‖ =

d
Φ (i−1)τ

(x(0))
Φτ

(
dx(0)Φ

(i−1)τ
w(0)

‖dx(0)Φ
(i−1)τ

w(0)‖
D0

)

D0
. (57)

Let us now denote by

ŵ((i − 1)τ ) = dx(0)Φ
(i−1)τw(0)

‖dx(0)Φ
(i−1)τ w(0)‖D0,
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the deviation vector at point Φ(i−1)τ (x(0)) having the same direction with w((i−1)τ )
and norm D0, and by Di its norm after its evolution for τ time units

Di = ‖dΦ (i−1)τ
(x(0))

Φτ ŵ((i − 1)τ )‖.

Using this notation we derive from (57)

ln
‖dx(0)Φ

iτ w(0)‖
‖dx(0)Φ

(i−1)τ w(0)‖ = ln
Di

D0
= lnαi , (58)

with αi being the local coefficient of expansion of the deviation vector for a
time interval of length τ when the corresponding orbit evolves from position
Φ(i−1)τ (x(0)) to position Φ iτ (x(0)) (lnαi/τ is also called stretching number [135],
[30, p. 257]).

From (55), (56), and (58) we conclude that the mLCE χ1 can be computed as

χ1 = lim
k→∞

X1(kτ ) = lim
k→∞

1

kτ

k∑
i=1

ln
Di

D0
= lim

k→∞
1

kτ

k∑
i=1

lnαi . (59)

Since the initial norm D0 can have any arbitrary value, one usually sets it to D0 = 1.
Equation (59) implies that practically χ1 is the limit value, for t → ∞, of the mean
of the stretching numbers along the studied orbit [14, 57, 135].

5.2 The Numerical Algorithm

In practice, for the evaluation of the mLCE we follow the evolution of a unitary
initial deviation vector ŵ(0) = w(0), ‖w(0)‖ = D0 = 1 and every t = τ time units
we replace the evolved vector w(kτ ), k = 1, 2, . . ., by vector ŵ(kτ ) having the same
direction but norm equal to 1 (‖ŵ(kτ )‖ = 1). Before each new renormalization the
corresponding αk is computed and χ1 is estimated from (59).

More precisely at t = τ we have α1 = ‖w(τ )‖. Then we define a unitary vector
ŵ(τ ) by renormalizing w(τ ) and using it as an initial deviation vector we evolve it
along the orbit from x(τ ) to x(2τ ) according to (52), having w(2τ ) = dx(τ )Φ

τ ŵ(τ ).
Then we define α2 = ‖w(2τ )‖ and we estimate χ1 (see Fig. 6). We iteratively
apply the above-described procedure until a good approximation of χ1 is achieved.
The algorithm for the evaluation of the mLCE χ1 is described in pseudo-code in
Table 1.

Instead of utilizing the variational equations or the tangent map for the evolution
of a deviation vector in the above-described algorithm, one could integrate (2) or
iterate (4) for two orbits starting nearby and estimate w(t) by difference. Indeed, this
approach, influenced by the rough idea of divergence of nearby orbits introduced
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x(0)

x(τ)

x(2τ)

w(τ)

w(2τ)

w(τ)

w(2τ)

w(0) = w(0)

Fig. 6 Numerical scheme for the computation of the mLCE χ1. The unitary deviation vector
ŵ((i −1)τ ), i = 1, 2, . . ., is evolved according to the variational equations (8) (continuous time) or
the equations of the tangent map (11) (discrete time) for t = τ time units. The evolved vector w(iτ )
is replaced by a unitary vector ŵ(iτ ) having the same direction with w(iτ ). For each successive
time interval [(i − 1)τ, iτ ] the quantity αi = ‖w(iτ )‖ is computed and χ1 is estimated from (59)

Table 1 The algorithm for the computation of the mLCE χ1 as the limit for t → ∞ of X1(t)
according to (59). The program computes the evolution of X1(t) as a function of time t up to a
given upper value of time t = TM or until X1(t) attains a very small value, smaller than a low
threshold value X1m

Input: 1. Hamilton equations of motion (2) and variational equations (8), or
equations of the map (4) and of the tangent map (11).

2. Initial condition for the orbit x(0).
3. Initial unitary deviation vector w(0).
4. Renormalization time τ .
5. Maximal time: TM and minimum allowed value of X1(t): X1m .

Step 1 Set the stopping flag, SF ← 0, and the counter, k ← 1.
Step 2 While (SF = 0) Do

Evolve the orbit and the deviation vector from time t = (k − 1)τ
to t = kτ , i. e. Compute x(kτ ) and w(kτ ).

Step 3 Compute current value of αk = ‖w(kτ )‖.
Compute and Store current value of X1(kτ ) = 1

kτ

∑k
i=1 lnαi .

Step 4 Renormalize deviation vector by Setting w(kτ ) ← w(kτ )/αk .
Step 5 Set the counter k ← k + 1.
Step 6 If [(kτ > TM ) or (X1((k − 1)τ ) < X1m )] Then

Set SF ← 1.
End If

End While
Step 7 Report the time evolution of X1(t).

in [72], was initially adopted for the computation of the mLCE [10, 99, 8]. This
technique was abandoned after a while as it was realized that the use of explicit
equations for the evolution of deviation vectors was more reliable and efficient [34,
119, 14], although in some cases it is used also nowadays (see, e.g., [145]).
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5.3 Behavior of X1(t) for Regular and Chaotic Orbits

Let us now discuss in more detail the behavior of the computational scheme for the
evaluation of the mLCE for the cases of regular and chaotic orbits.

The LCE of regular orbits vanish [10, 23] due to the linear increase with time
of the norm of deviation vectors. We illustrate this behavior in the case of an ND
Hamiltonian system, but a similar analysis can be easily carried out for symplectic
maps. In such systems regular orbits lie on N -dimensional tori. If such tori are
found around a stable periodic orbit, they can be accurately described by N formal
integrals of motion in involution, so that the system would appear locally integrable.
This means that we could perform a local transformation to action-angle variables,
considering as actions J1, J2, . . . , JN the values of the N formal integrals, so that
Hamilton’s equations of motion, locally attain the form

J̇i = 0, θ̇i = ωi (J1, J2, . . . , JN ), i = 1, 2, . . . , N . (60)

These equations can be easily integrated to give

Ji (t) = Ji0, θi (t) = θi0 + ωi (J10, J20, . . . , JN0) t, i = 1, 2, . . . , N ,

where Ji0, θi0, i = 1, 2, . . . , N are the initial conditions of the studied orbit.
By denoting as ξi , ηi , i = 1, 2, . . . , N small deviations of Ji and θi respectively,

the variational equations (8) of system (60) describing the evolution of a deviation
vector are as follows:

ξ̇i = 0, η̇i =
N∑

j=1

ωi j · ξ j , i = 1, 2, . . . , N ,

where

ωi j = ∂ωi

∂ Jj

∣∣∣∣
J0

, i, j = 1, 2, . . . , N ,

and J0 = (J10, J20, . . . , JN0) = constant represents the N–dimensional vector of
the initial actions. The solution of these equations is

ξi (t) = ξi (0)

ηi (t) = ηi (0) +
[∑N

j=1 ωi jξ j (0)
]

t,
i = 1, 2, . . . , N . (61)

From (61) we see that an initial deviation vector w(0) with coordinates ξi (0),
i = 1, 2, . . . , N in the action variables and ηi (0), i = 1, 2, . . . , N in the angles,
i.e., w(0) = (ξ1(0), ξ2(0), . . . , ξN (0), η1(0), η2(0), . . . , ηN (0)), evolves in time in
such a way that its action coordinates remain constant, while its angle coordinates
increase linearly in time. This behavior implies an almost linear increase of the norm
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of the deviation vector. To see this, let us assume that vector w(0) has initially unit
magnitude, i.e.,

N∑
i=1

ξ 2
i (0) +

N∑
i=1

η2
i (0) = 1

whence the time evolution of its norm is given by

‖w(t)‖ =

⎧⎪⎨
⎪⎩1 +

⎡
⎢⎣

N∑
i=1

⎛
⎝ N∑

j=1

ωi jξ j (0)

⎞
⎠

2
⎤
⎥⎦ t2 +

⎡
⎣2

N∑
i=1

⎛
⎝ηi (0)

N∑
j=1

ωi jξ j (0)

⎞
⎠
⎤
⎦ t

⎫⎪⎬
⎪⎭

1/2

.

This implies that the norm for long times grows linearly with t :

‖w(t)‖ ∝ t. (62)

So, from (54) we see that for long times X1(t) is of the order O(ln t/t), which
means that X1(t) tends asymptotically to zero, as t → ∞ like t−1. This asymptotic
behavior is evident in numerical computations of the mLCE of regular orbits, as we
can see, for example, in the left panel of Fig. 2.

The asymptotic behavior of X1(t) for regular orbits, described above, represents
a particular case of a more general estimation presented in [63]. In particular, Gold-
hirsch et al. [63] showed that, in general, after some initial transient time the value
of the mLCE χ1 is related to its finite time estimation by

X1(t) = χ1 + b + z(t)

t
, (63)

where b is a constant and z(t) is a “noise” term of zero mean. According to their
analysis, this approximate formula is valid for both regular and chaotic orbits. It is
easily seen that from (63) we retrieve again the asymptotic behavior X1(t) ∝ t−1

for the case of regular orbits (χ1 = 0).
In the case of chaotic orbits the variation of X1(t) is usually irregular for rela-

tively small t and only for large t the value of X1(t) stabilizes and tends to a constant
positive value which is the mLCE χ1. If, for example, the value of χ1 is very small
then initially, for small and intermediate values of t , the term proportional to t−1

dominates the r.h.s. of (63) and X1(t) ∝ t−1. As t grows the significance of term
(b+ z(t))/t diminishes and eventually the value of χ1 becomes dominant and X1(t)
stabilizes. It becomes evident that for smaller values of χ1 the larger is the time
required for X1(t) to reach its limiting value, and consequently X1(t) behaves as in
the case of regular orbits, i.e., X1(t) ∝ t−1 for larger time intervals. This behavior
is clearly seen in Fig. 7 where the evolution of X1(t) of chaotic orbits with small
mLCE is shown. In particular, the values of the mLCE are χ1 ≈ 8 × 10−3 (left
panel) and χ1 ≈ 1.6 × 10−7 (right panel). In both panels the evolution of X1(t) of
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Fig. 7 Evolution of X1(t) (denoted as L N ) with respect to the discrete time t (denoted as N ) in
log–log scale for regular (grey curves) and chaotic (black curves) orbits of the 4d map (16) (left
panel) and of a 4d map composed of two coupled 2d standard maps (right panel) (see [122] for
more details). For regular orbits X1(t) tends to zero following a power law decay, X1(t) ∝ t−1.
For chaotic orbits X1(t) exhibits for some initial time interval the same power law decay before
stabilizing to the positive value of the mLCE χ1. The length of this time interval is larger for
smaller values of χ1. The chaotic orbits have χ1 ≈ 8 × 10−3 (left panel) and χ1 ≈ 1.6 × 10−7

(right panel) (after [122])

regular orbits (following the power law ∝ t−1) is also plotted in order to facilitate
the comparison between the two cases.

6 Computation of the Spectrum of LCEs

While the knowledge of the mLCE χ1 can be used for determining the regular
(χ1 = 0) or chaotic (χ1 > 0) nature of orbits, the knowledge of part, or of the whole
spectrum of LCEs, provides additional information on the underlying dynamics and
on the statistical properties of the system and can be used for measuring the fractal
dimension of strange attractors in dissipative systems.

In Sect. 4.5 it was stated that for Hamiltonian systems the existence of an integral
of motion results to a pair of zero values in the spectrum of LCEs. As an example of
such case we refer to the Hamiltonian system studied in [12]. This system has one
more integral of motion apart from the Hamiltonian function and so four LCEs were
always found to be equal to zero. Thus, the determination of the number of LCEs
that vanish can be used as an indicator of the number of the independent integrals
of motion that a dynamical system has.

It has been also stated in Sect. 4.5 that the spectrum of the LCEs of orbits in
a connected chaotic region is independent of their initial conditions. So, we have
a strong indication that two chaotic orbits belong to connected chaotic regions if
they exhibit the same spectrum. As an example of this situation we refer to the case
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studied in [3] of two chaotic orbits of a 16D Hamiltonian system having similar
spectra of LCEs but very different initial conditions.

Vice versa, the existence of different LCEs spectra of chaotic orbits provides
strong evidence that these orbits belong to different chaotic regions of the phase
space that do not communicate. In [14] two chaotic orbits, previously studied in
[34], were found to have significantly different spectra of LCEs and they were
considered to belong to different chaotic regions which were called the “big” (cor-
responding to the largest χ1) and the “small” chaotic sea. It is worth mentioning
that the numerical results of [14] suggested the possible existence of an additional
integral of motion for the “small” chaotic sea, since χ2 seemed to vanish. This
assumption was in accordance to the results of [34] where such an integral was
formally constructed.

The spectrum of LCEs is also related to two important quantities namely, the
metric entropy, also called Kolmogorov–Sinai (KS) entropy h, and the information
dimension D1, which are trying to quantify the statistical properties of dynamical
systems. For the explicit definition of these quantities, as well as detailed discussion
of their relation to the LCEs the reader is referred, for example, to [9, 46, 54, 44]
[92, pp. 304–305] for the KS entropy and to [79, 46, 47, 66, 44] for the information
dimension.

In particular, Pesin [106] showed that under suitable smoothness conditions the
relation between the KS entropy h and the LCEs is given by

h =
∫
M

⎡
⎣ ∑

χi (x)>0

χi (x)

⎤
⎦ dμ,

where the sum is extended over all positive LCEs and the integral is defined over a
specified region M of the phase space S.

Kaplan and Yorke [79] introduced a quantity, which they called the Lyapunov
dimension

DL = j +
∑ j

i=1 χi

|χ j+1| , (64)

where j is the largest integer for which χ1 + χ2 + . . . + χ j ≥ 0. The Kaplan–
Yorke conjecture states that the information dimension D1 is equal to the Lyapunov
dimension DL , i.e.,

D1 = DL , (65)

for a typical system, and thus, it can be used for the determination of the frac-
tal dimension of strange attractors. The meaning of the word “typical” is that it
is not hard to construct examples where (65) is violated (see, e.g., [47]). But the
claim is that these examples are pathological in that the slightest arbitrary change
of the system restores the applicability of (65) and that such violation has “zero
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probability” of occurring in practice. The validity of the Kaplan–Yorke conjecture
has been proved in some cases [146, 87] although a general proof has not been
achieved yet. We note that in the case of a 2ND conservative system DL is equal to
the dimension of the whole space, i.e., DL = 2N , because j = 2N in (64) since∑2N

i=1 χi = 0 according to (47).
So, it becomes evident that developing an efficient algorithm for the numerical

evaluation of few or of all LCEs is of great importance for the study of dynamical
systems. In this section we present the different methods developed over the years
for the computation of the spectrum of LCEs, focusing on the method suggested by
Benettin et al. [14], the so-called standard method.

6.1 The Standard Method for Computing LCEs

The basis for the computation of few or even of all LCEs is Theorem 3, which
states that the computation of a p-LCE from (44), considering a random choice of p
(1 < p ≤ 2N ) linearly independent initial deviation vectors, leads to the evaluation
of the p-mLCE χ

(p)
1 , which is equal to the sum of the p largest 1-LCEs (46).

In order to evaluate the p-mLCE of an orbit with initial condition x(0), one has
to follow simultaneously the time evolution of the orbit itself and of p linearly inde-
pendent deviation vectors with initial conditions w1(0),w2(0), . . . ,wp(0) (using
the variational equations (8) or the equations of the tangent map (11)). Then, the
p-mLCE is computed as the limit for t →∞ of the quantity

X (p)(t) = 1

t
ln

volp
(
dx(0)Φ

t w1(0), dx(0)Φ
t w2(0), · · · , dx(0)Φ

t wp(0)
)

volp
(
w1(0),w2(0), . . . ,wp(0)

)

= 1

t
ln

‖w1(t) ∧ w2(t) ∧ · · · ∧ wp(t)‖
‖w1(0) ∧ w2(0) ∧ · · · ∧ wp(0)‖ = 1

t
ln

∥∥∧p
i=1 wi (t)

∥∥∥∥∧p
i=1 wi (0)

∥∥ , (66)

which is also called the finite time p-mLCE. So we have

χ
(p)
1 = χ1 + χ2 + · · · + χp = lim

t→∞ X (p)(t). (67)

We recall that the quantity volp
(
w1,w2, . . . ,wp

)
appearing in the above definition

is the volume of the p-parallelogram having as edges the vectors w1,w2, · · · ,wp

(see (106) and (105) in Appendix).
The direct numerical implementation of (66) and (67) faces one additional dif-

ficulty apart from the fast growth of the norm of deviation vectors discussed in
Sect. 5.1. This difficulty is due to the fact that when at least two vectors are involved
(e.g., for the computation of χ (2)

1 ), the angles between their directions become too
small for numerical computations.

This difficulty can be overcome on the basis of the following simple remark:
an invertible linear map, as dx(0)Φ

t , maps a linear p-dimensional subspace onto
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a linear subspace of the same dimension, and the coefficient of expansion of any
p-dimensional volume under the action of any such linear map (for example,∥∥∧p

i=1 wi (t)
∥∥ / ∥∥∧p

i=1 wi (0)
∥∥ in our case) does not depend on the initial volume

[14]. Since the numerical value of
∥∥∧p

i=1 wi (0)
∥∥ does not depend on the choice of

the orthonormal basis of the space (see Appendix for more details), in order to show
the validity of this remark we will consider an appropriate basis which will facilitate
our calculations.

In particular, let us consider an orthonormal basis
{
ê1, ê2, . . . , êp

}
of the

p-dimensional space E p ⊆ Tx(0)S spanned by
{
w1(0),w2(0), . . . ,wp(0)

}
. This

basis can be extended to an orthonormal basis of the whole 2N -dimensional space{
ê1, ê2, . . . , êp, êp+1, . . . , ê2N

}
and E p ⊆ Tx(0)S can be written as the direct sum of

E p and of the (2N − p)-dimensional subspace E ′ spanned by
{
êp+1, . . . , ê2N

}
Tx(0)S = E p

⊕
E ′.

Consider also the 2N × p matrix W(0) having as columns the coordinates of vec-
tors wi (0), i = 1, 2, . . . , p with respect to the complete orthonormal basis ê j ,
j = 1, 2, . . . , 2N , in analogy to (102). Since wi (0) ∈ E p this matrix has the form

W(0) =
[

W̃(0)
0(2N−p)×p

]
,

where W̃(0) is a square p× p matrix and 0(2N−p)×p is the (2N − p)× p matrix with
all its elements equal to zero. Then, according to (105) and (106) the volume of the
initial p-parallelogram is ∥∥∥∥∥

p∧
i=1

wi (0)

∥∥∥∥∥ =
∣∣det W̃(0)

∣∣ , (68)

since det W̃
T
(0) = det W̃(0) for the square matrix W̃(0).

Each deviation vector is evolved according to (7) and it can be computed through
(9) or (12), with Y(t) being the 2N × 2N matrix representing the action of dx(0)Φ

t .
By doing a similar choice for the basis of the T Φ

t
(x(0))S space, (102) gives for the

evolved vectors

[
w1(t) w2(t) · · · wp(t)

] = [ ê1 ê2 · · · êp
] · Y(t) · W(0) = [ ê1 ê2 · · · êp

] · W(t).

Writing Y(t) as

Y(t) = [Y1(t) Y2(t)
]
,

where Y1(t) is the 2N × p matrix formed from the first p columns of Y(t) and Y2(t)
is the 2N × (2N − p) matrix formed from the last 2N − p columns of Y(t), W(t)
assumes the following form:

W(t) = Y1(t) · W̃(0).
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Then from (105) we get

∥∥∥∥∥
p∧

i=1

wi (t)

∥∥∥∥∥ =
√

det
(

W̃
T
(0) · YT

1 (t) · Y1(t) · W̃(0)
)

=
√

det W̃
T
(0) det

(
YT

1 (t) · Y1(t)
)

det W̃(0)

= | det W̃(0)|
√

det
(
YT

1 (t) · Y1(t)
)
. (69)

Thus, from (68) and (69) we conclude that the coefficient of expansion

∥∥∧p
i=1 wi (t)

∥∥∥∥∧p
i=1 wi (0)

∥∥ =
√

det
(
YT

1 (t) · Y1(t)
)

does not depend on the initial volume but it is an intrinsic quantity of the subspaces
defined by the properties of dx(0)Φ

t . Note that in the particular case of p = 2N
the coefficient of expansion is equal to | det Y(t)| in accordance to (43). An alter-
native way of expressing this property is that, for two sets of linearly independent
vectors

{
w1(0),w2(0), . . . ,wp(0)

}
and

{
f1(0), f2(0), . . . , fp(0)

}
spanning the same

p-dimensional subspace of Tx(0)S, the relation

∥∥∧p
i=1 wi (t)

∥∥∥∥∧p
i=1 wi (0)

∥∥ =
∥∥∧p

i=1 fi (t)
∥∥∥∥∧p

i=1 fi (0)
∥∥ (70)

holds [119].
Let us now describe the method for the actual computation of the p-mLCE. Sim-

ilarly to the computation of the mLCE we fix a small time interval τ and define
quantity X (p)(t) (66) as

X (p)(kτ ) = 1

kτ

k∑
i=1

ln
‖∧p

j=1 dx(0)Φ
iτ w j (0)‖

‖∧p
j=1 dx(0)Φ

(i−1)τ w j (0)‖ = 1

kτ

k∑
i=1

ln γ (p)
i , (71)

where γ
(p)
i , i = 1, 2, . . ., is the coefficient of expansion of a p-dimensional volume

from t = (i − 1)τ to t = iτ . According to (70) γ (p)
i can be computed as the coef-

ficient of expansion of the p-parallelogram defined by any p vectors spanning the
same p-dimensional space. A suitable choice for this set is to consider an orthonor-
mal set of vectors

{
ŵ1((i − 1)τ ), ŵ2((i − 1)τ ), . . . , ŵp((i − 1)τ )

}
giving to (71) the

simplified form

X (p)(kτ ) = 1

kτ

k∑
i=1

ln γ (p)
i = 1

kτ

k∑
i=1

ln

∥∥∥∥∥∥
p∧

j=1

dx((i−1)τ )Φ
τ ŵ j ((i − 1)τ )

∥∥∥∥∥∥ . (72)
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Thus, from (67) and (72) we get

χ
(p)
1 = χ1 + χ2 + · · · + χp = lim

k→∞
1

kτ

k∑
i=1

ln γ
(p)
i (73)

for the computation of the p-mLCE. This equation is valid for 1 ≤ p ≤ 2N since
in the extreme case of p = 1 it is simply reduced to (59) with αi ≡ γ

(1)
i . In order

to estimate the values of χi , i = 1, 2, . . . , p, which is our actual goal, we compute
from (73) all the χ

(p)
1 quantities and evaluate the LCEs from

χi = χ
(i)
1 − χ

(i−1)
1 , i = 2, 3, . . . , p, (74)

with χ
(1)
1 ≡ χ1 [119].

Benettin et al. [14] noted that the p largest 1-LCEs can be evaluated at once by
computing the evolution of just p deviation vectors for a particular choice of the
orthonormalization procedure, namely performing the Gram-Schmidt orthonormal-
ization method.

Let us discuss the Gram-Schmidt orthonormalization method in some detail. Let
w j (iτ ), j = 1, 2, . . . , p be the evolved deviation vectors ŵ j ((i − 1)τ ) from time
t = (i − 1)τ to t = iτ . From this set of linearly independent vectors we construct a
new set of orthonormal vectors ŵ j (iτ ) from equations

u1(iτ ) = w1(iτ ), γ1i = ‖u1(iτ )‖, ŵ1(iτ ) = u1(iτ )

γ1i
,

u2(iτ ) = w2(iτ ) − 〈w2(iτ ), ŵ1(iτ )〉ŵ1(iτ ),

γ2i = ‖u2(iτ )‖, ŵ2(iτ ) = u2(iτ )

γ2i
,

u3(iτ ) = w3(iτ ) − 〈w3(iτ ), ŵ1(iτ )〉ŵ1(iτ ) − 〈w3(iτ ), ŵ2(iτ )〉ŵ2(iτ ),

γ3i = ‖u3(iτ )‖, ŵ3(iτ ) = u3(iτ )

γ3i
,

...

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(75)

which are repeated up to the computation of ŵp(iτ ). We remark that 〈w, u〉 denotes
the usual inner product of vectors w, u. The general form of the above equations,
which is the core of the Gram-Schmidt orthonormalization method, is

rluk(iτ ) =wk(iτ ) −
k−1∑
j=1

〈wk(iτ ), ŵ j (iτ )〉ŵ j (iτ ),

γki =‖uk(iτ )‖, ŵk(iτ ) = uk(iτ )

γki
,

(76)

for 1 ≤ k ≤ p.
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As we will show in Sect. 6.3 the volume of the p-parallelogram having as edges
the vectors dx((i−1)τ )Φ

τ ŵ j ((i − 1)τ ) = w j (iτ ), j = 1, 2, . . . , p is equal to the
volume of the p-parallelogram having as edges the vectors u j (iτ ), i.e.,

∥∥∥∥∥∥
p∧

j=1

dx((i−1)τ )Φ
τ ŵ j ((i − 1)τ )

∥∥∥∥∥∥ =
∥∥∥∥∥∥

p∧
j=1

u j (iτ )

∥∥∥∥∥∥ . (77)

Since vectors u j (iτ ) are normal to each other, the volume of their p-parallelogram
is equal to the product of their norms. This leads to

γ
(p)
i =

∥∥∥∥∥∥
p∧

j=1

u j (iτ )

∥∥∥∥∥∥ =
p∏

j=1

γ j i . (78)

Then, (73) takes the form

χ
(p)
1 = χ1 + χ2 + · · · + χp = lim

k→∞
1

kτ

k∑
i=1

ln

⎛
⎝ p∏

j=1

γ j i

⎞
⎠ .

Using now (74) we are able to evaluate the 1-LCE χp as

χp = χ
(p)
1 − χ

(p−1)
1 = lim

k→∞
1

kτ

k∑
i=1

ln

∏p
j=1 γ j i∏p−1
j=1 γ j i

= lim
k→∞

1

kτ

k∑
i=1

ln γpi .

In conclusion we see that the value of the 1-LCE χp with 1 < p ≤ 2N can be
computed as the limiting value, for t → ∞, of the quantity

X p(kτ ) = 1

kτ

k∑
i=1

ln γpi ,

i.e.,

χp = lim
k→∞

X p(kτ ) = lim
k→∞

1

kτ

k∑
i=1

ln γpi , (79)

where γ j i , j = 1, 2, . . . , p, i = 1, 2, . . . are quantities evaluated during the suc-
cessive orthonormalization procedures ((75) and (76)). Note that for p = 1 (79) is
actually (59) with αi ≡ γ1i .
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6.2 The Numerical Algorithm for the Standard Method

In practice, in order to compute the p largest 1-LCEs with 1 < p ≤ 2N we fol-
low the evolution of p initially orthonormal deviation vectors ŵ j (0) = w j (0) and
every t = τ time units we replace the evolved vectors w j (kτ ), j = 1, 2, . . . , p,
k = 1, 2, . . . by a new set of orthonormal vectors produced by the Gram–Schmidt
orthonormalization method (76). During the orthonormalization procedure the quan-
tities γ jk are computed and χ1, χ2, . . . , χp are estimated from (79). This algorithm
is described in pseudo-code in Table 2 and can be used for the computation of few or
even all 1-LCEs. A Fortran code of this algorithm can be found in [144], while [117]
contains a similar code developed for the computer algebra platform “Mathematica”
(Wolfram Research Inc.).

Let us illustrate the implementation of this algorithm in the particular case of
the computation of the two largest LCEs χ1 and χ2. As shown in Fig. 8 we start
our computation with two orthonormal deviation vectors w1(0) and w2(0) which
are evolved to w1(τ ), w2(τ ) at t = τ . Then according to the the Gram-Schmidt
orthonormalization method (75) we define vectors u1(τ ) and u2(τ ). In particular,

Table 2 The standard method. The algorithm for the computation of the p largest LCEs
χ1, χ2, . . . , χp as limits for t → ∞ of quantities X1(t), X2(t), . . . , X p(t) (71), according to (79).
The program computes the evolution of X1(t), X2(t), . . . , X p(t) with respect to time t up to a
given upper value of time t = TM or until any of the quantities X1(t), X2(t), . . . , X p(t) attain a
very small value, smaller than a low threshold value Xm

Input: 1. Hamilton equations of motion (2) and variational equations (8), or
equations of the map (4) and of the tangent map (11).

2. Number of desired LCEs p.
3. Initial condition for the orbit x(0).
4. Initial orthonormal deviation vectors w1(0), w2(0), . . ., wp(0).
5. Renormalization time τ .
6. Maximal time: TM and minimum allowed value of X1(t),

X2(t), . . ., X p(t): Xm .

Step 1 Set the stopping flag, SF ← 0, and the counter, k ← 1.
Step 2 While (SF = 0) Do

Evolve the orbit and the deviation vectors from time t = (k − 1)τ
to t = kτ , i. e. Compute x(kτ ) and w1(kτ ), w2(kτ ), . . ., wp(kτ ).

Step 3 Perform the Gram-Schmidt orthonormalization procedure
according to (76):
Do for j = 1 to p

Compute current vectors u j (kτ ) and values of γ jk .
Compute and Store current values of X j (kτ ) = 1

kτ

∑k
i=1 ln γ j i .

Set w j (kτ ) ← u j (kτ )/γ jk .
End Do

Step 4 Set the counter k ← k + 1.
Step 5 If [(kτ > TM ) or (Any of X j ((k − 1)τ ) < Xm , j = 1, 2, . . . , p)] Then

Set SF ← 1.
End If

End While
Step 6 Report the time evolution of X1(t), X2(t), . . . , X p(t).
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Fig. 8 Numerical scheme for the computation of the two largest LCEs χ1, χ2 according to the
standard method. The orthonormal deviation vectors w1(0), w2(0) are evolved according to the
variational equations (8) (continuous time) or the equations of the tangent map (11) (discrete time)
for t = τ time units. The evolved vectors w1(τ ), w2(τ ), are replaced by a set of orthonormal vectors
ŵ1(τ ), ŵ2(τ ), which span the same 2-dimensional vector space, according to the Gram–Schmidt
orthonormalization method (76). Then these vectors are again evolved and the same procedure is
iteratively applied. For each successive time interval [(i − 1)τ, iτ ], i = 1, 2, . . ., the quantities
γ1i = ‖u1(iτ )‖, γ2i = ‖u2(iτ )‖ are computed and χ1, χ2 are estimated from (79)

u1(τ ) coincides with w1(τ ) while, u2(τ ) is the component of vector w2(τ ) in the
direction perpendicular to vector u1(τ ). The norms of these two vectors define
the quantities γ11 = ‖u1(τ )‖, γ21 = ‖u2(τ )‖ needed for the estimation of χ1,
χ2 from (79). Then vectors ŵ1(τ ) and ŵ2(τ ) are defined as unitary vectors in the
directions of u1(τ ) and u2(τ ), respectively. Since the unitary vectors ŵ1(τ ), ŵ2(τ )
are normal by construction they constitute the initial set of orthonormal vectors
for the next iteration of the algorithm. From Fig. 8 we easily see that the paral-
lelograms defined by vectors w1(τ ), w2(τ ) and by vectors u1(τ ) and u2(τ ) have
the same area. This equality corresponds to the particular case p = 2, i = 1 of
(77). Evidently, since vectors u1(τ ), u2(τ ) are perpendicular to each other, we have
vol2 (u1(τ ), u2(τ )) = γ11γ21 in accordance to (78).

6.3 Connection Between the Standard Method
and the QR Decomposition

Let us rewrite (75) of the Gram-Schmidt orthonormalization procedure, by solving
them with respect to w j (iτ ), j = 1, 2, . . . , p, with 1 < p ≤ 2N

w1(iτ ) = γ1i ŵ1(iτ )

w2(iτ ) = 〈ŵ1(iτ ), w2(iτ )〉ŵ1(iτ ) + γ2i ŵ2(iτ )

w3(iτ ) = 〈ŵ1(iτ ), w3(iτ )〉ŵ1(iτ ) + 〈ŵ2(iτ ), w3(iτ )〉ŵ2(iτ ) + γ3i ŵ3(iτ )

...

(80)
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and get the general form

wk(iτ ) =
k−1∑
j=1

〈ŵ j (iτ ),wk(iτ )〉ŵ j (iτ ) + γki ŵk(iτ ), k = 1, 2, . . . , p.

This set of equations can be rewritten in matrix form as follows:

[
w1(iτ ) w2(iτ ) · · · wp(iτ )

] = [ ŵ1(iτ ) ŵ2(iτ ) · · · ŵp(iτ )
] ·

·

⎡
⎢⎢⎢⎢⎢⎣

γ1i 〈ŵ1(iτ ),w2(iτ )〉 〈ŵ1(iτ ),w3(iτ )〉 · · · 〈ŵ1(iτ ),wp(iτ )〉
0 γ2i 〈ŵ2(iτ ),w3(iτ )〉 · · · 〈ŵ2(iτ ),wp(iτ )〉
0 0 γ3i · · · 〈ŵ3(iτ ),wp(iτ )〉
...

...
...

...
0 0 0 γpi

⎤
⎥⎥⎥⎥⎥⎦
.

So the 2N × p matrix W(iτ ) = [
w1(iτ ) w2(iτ ) · · · wp(iτ )

]
, having as columns

the linearly independent deviation vectors w j (iτ ), j = 1, 2, . . . , p is written as a
product of the 2N × p matrix Q = [ ŵ1(iτ ) ŵ2(iτ ) · · · ŵp(iτ )

]
, having as columns

the coordinates of the orthonormal vectors ŵ j (iτ ), j = 1, 2, . . . , p and satisfying
QTQ = Ip, and of an upper triangular p × p matrix R(iτ ) with positive diagonal
elements

R j j (iτ ) = γ j i , j = 1, 2, . . . , p, i = 1, 2, . . . .

From (80) we easily see that 〈ŵ j (iτ ),w j (iτ )〉 = γ j i and so matrix R(iτ ) can be
also expressed as

R(iτ ) =

⎡
⎢⎢⎢⎣
〈ŵ1(iτ ),w1(iτ )〉 〈ŵ1(iτ ),w2(iτ )〉 · · · 〈ŵ1(iτ ),wp(iτ )〉

0 〈ŵ2(iτ ),w2(iτ )〉 · · · 〈ŵ2(iτ ),wp(iτ )〉
...

...
...

0 0 〈ŵp(iτ ),wp(iτ )〉

⎤
⎥⎥⎥⎦ .

The above procedure is the so-called QR decomposition of a matrix. In practice,
we proved by actually constructing the Q and R matrices via the Gram-Schmidt
orthonormalization method, the following theorem.

Theorem 4. Let A be an n × m (n ≥ m) matrix with linearly independent columns.
Then A can be uniquely factorized as

A = Q · R,

where Q is an n × m matrix with orthogonal columns, satisfying QTQ = Im and R
is an m × m invertible upper triangular matrix with positive diagonal entries.
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Although we presented the QR decomposition through the Gram–Schmidt
orthonormalization procedure this decomposition can also be achieved by others,
computationally more efficient techniques like for example the Householder trans-
formation [62] [107, Sect. 2.10].

Observing that the quantities γ j i , j = 1, 2 . . . , p, i = 1, 2 . . ., needed for the
evaluation of the LCEs through (79) are the diagonal elements of R(iτ ) we can
implement a variant of the standard method for the computation on the LCEs, which
is based on the QR decomposition procedure [44, 62, 36, 40]. Similarly to the pro-
cedure followed in Sect. 6.2, in order to compute the p (1 < p ≤ 2N ) largest LCEs
we follow the evolution of p initially orthonormal deviation vectors ŵ j (0) = w j (0),
j = 1, 2 . . . , p, which can be considered as columns of a 2N× p matrix Q(0). Every
t = τ time units the matrix W(iτ ), i = 1, 2, . . ., having as columns the deviation
vectors

dx((i−1)τ )Φ
τ ŵ j ((i − 1)τ ) = w j (iτ ), j = 1, 2, . . . , p,

i.e., the columns of Q((i − 1)τ ) evolved in time interval [(i − 1)τ, iτ ] by the action
of dx((i−1)τ )Φ

τ , undergoes the QR decomposition procedure

W(iτ ) = Q(iτ ) · R(iτ ) (81)

and the new Q(iτ ) is again evolved for the next time interval [iτ, (i+1)τ ], and so on
and so forth. Then the LCEs are estimated from the values of the diagonal elements
of matrix R(iτ ) as

χp = lim
k→∞

1

kτ

k∑
i=1

ln Rpp(iτ ). (82)

The corresponding algorithm is presented in pseudo-code in Table 3. From the
above-presented analysis it becomes evident that the standard method developed
by Shimada and Nagashima [119] and Benettin et al. [14] for the computation of
the LCEs is practically a QR decomposition procedure performed by the Gram–
Schmidt orthonormalization method, although the authors of these papers formally
do not refer to the QR decomposition. We note that both the standard method and
the QR decomposition technique presented here can be used for the computation of
part (p < 2N ) or of the whole (p = 2N ) spectrum of LCEs.

As a final remark on the QR decomposition technique let us show the validity
of (77) by considering the QR decomposition of matrix W(iτ ) (81). According to
(105) and (106) we have
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Table 3 Discrete QR decomposition. The algorithm for the computation of the p largest LCEs
χ1, χ2, . . . , χp according to the QR decomposition method. The program computes the evolution
of X1(t), X2(t), . . . , X p(t) with respect to time t up to a given upper value of time t = TM or until
any of the these quantities becomes smaller than a low threshold value Xm

Input: 1. Hamilton equations of motion (2) and variational equations (8), or
equations of the map (4) and of the tangent map (11).

2. Number of desired LCEs p.
3. Initial condition for the orbit x(0).
4. Initial matrix Q(0) having as columns orthonormal deviation vectors

w1(0), w2(0), . . ., wp(0).
5. Time interval τ between successive QR decompositions.
6. Maximal time: TM and minimum allowed value of X1(t),

X2(t), . . ., X p(t): Xm .

Step 1 Set the stopping flag, SF ← 0, and the counter, k ← 1.
Step 2 While (SF = 0) Do

Evolve the orbit and the matrix Q((k − 1)τ ) from time t = (k − 1)τ
to t = kτ , i. e. Compute x(kτ ) and W(iτ ).

Step 3 Perform the QR decomposition of W(iτ ) according to (81):
Compute Q(kτ ) and R(kτ ).
Compute and Store current values of X j (kτ ) = 1

kτ

∑k
i=1 ln R j j (iτ ),

j = 1, 2 . . . , p.
Step 4 Set the counter k ← k + 1.
Step 5 If [(kτ > TM ) or (Any of X j ((k − 1)τ ) < Xm , j = 1, 2, . . . , p)] Then

Set SF ← 1.
End If

End While
Step 6 Report the time evolution of X1(t), X2(t), . . . , X p(t).

∥∥∥∥∥∥
p∧

j=1

w j (iτ )

∥∥∥∥∥∥ =
√

det
(
WT(iτ ) · W(iτ )

)

=
√

det
(
RT(iτ ) · QT(iτ ) · Q(iτ ) · R(iτ )

)

=
√

det RT(iτ ) det R(iτ ) = |det R(iτ )|

=
p∏

j=1

γ j i =
p∏

j=1

∥∥u j (iτ )
∥∥ =

∥∥∥∥∥∥
p∧

j=1

u j (iτ )

∥∥∥∥∥∥ ,

where the identities QTQ = Ip and det R(iτ ) =∏p
j=1 γ j i have been used.

6.4 Other Methods for Computing LCEs

Over the years several methods have been proposed and applied for computing the
numerical values of the LCEs. The standard method we discussed so far is the
first and probably the simplest method to address this problem. As we showed
in Sect. 6.3 the standard method, which requires successive applications of the
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Gram-Schmidt orthonormalization procedure, is practically equivalent to the QR
decomposition technique.

The reorthonormalization of deviation vectors plays an indispensable role for
computing the LCEs and the corresponding methods can be distinguished in discrete
and continuous methods. The discrete methods iteratively approximate the LCEs in
a finite number of (discrete) time steps and therefore apply to both continuous and
discrete dynamical systems [62, 36, 40]. The standard method and its QR decompo-
sition version are discrete methods. A method is called continuous when all relevant
quantities are obtained as solutions of certain ordinary differential equations, which
maintain orthonormality of deviation vectors continuously. Therefore such methods
can only be formulated for continuous dynamical systems and not for maps. The
use of continuous orthonormalization for the numerical computation of LCEs was
first proposed by Goldhirsch et al. [63] and afterward developed by several authors
[67, 62, 36, 40, 26, 110, 109, 94, 38].

Discrete and continuous methods are based on appropriate decomposition of
matrices performed usually by the QR decomposition or by the SVD procedure.
The discrete QR decomposition which has already been presented in Sect. 6.3 is
the most frequently used method and has proved to be quite efficient and reliable.
The continuous QR decomposition and methods based on the SVD procedure are
discussed in some detail at the end of the current section.

Variants of these techniques have been also proposed by several authors. Let us
briefly refer to some of them. Rangarajan et al. [110] introduced a method for the
computation of part or of the whole spectrum of LCEs for continuous dynamical
systems, which does not require rescaling and renormalization of vectors. The key
feature of their approach is the use of explicit group theoretical representations of
orthogonal matrices, which leads to a set of coupled ordinary differential equations
for the LCEs along with the various angles parameterizing the orthogonal matri-
ces involved in the process. Ramasubramanian and Sriram [109] showed that the
method is competitive with the standard method and the continuous QR decompo-
sition.

Carbonell et al. [20] proposed a method for the evaluation of the whole spectrum
of LCEs by approximating the differential equations describing the evolution of an
orbit of a continuous dynamical system and their associated variational equations by
two piecewise linear sets of ordinary differential equations. Then an SVD or a QR
decomposition-based method is applied to these two new sets of equations, allowing
us to obtain approximations of the LCEs of the original system. An advantage of
this method is that it does not require the simultaneous integration of the two sets of
piecewise linear equations.

Lu et al. [94] proposed a new continuous method for the computation of few or
of all LCEs, which is related to the QR decomposition technique. According to their
method one follows the evolution of orthogonal vectors, similarly to the QR method,
but does not require them to be necessarily orthonormal. By relaxing the length
requirement Lu et al. [94] established a set of recursive differential equations for
the evolution of these vectors. Using symplectic Runge–Kutta integration schemes
for the evolution of these vectors they succeeded in preserving automatically the



Lyapunov Characteristic Exponents 111

orthogonality between any two successive vectors. Normalization of vectors occurs
whenever the magnitude of any vector exceeds given lower or upper bounds.

Chen et al. [24] proposed a simple discrete QR algorithm for the computation
of the whole spectrum of LCEs of a continuous dynamical system. Their method
is based on a suitable approximation of the solution of variational equations by
assuming that the Jacobian matrix remains constant over small integration time
steps. Thus, the scheme requires the numerical solution of the 2N equations of
motion but not the solution of the (2N )2 variational equations since their solution is
approximated by an explicit expression involving the computed orbit. This approach
led to a computationally fast evaluation of the LCEs for various multidimensional
dynamical systems studied in [24].

It is worth mentioning here a completely different approach, with respect to the
above-mentioned techniques, which was developed at the early 1980s. In particular,
Frøyland proposed in [60] an algorithm for the computation of LCEs, which he
claimed to be quite efficient in the case of low-dimensional systems, and applied it
to the Lorenz system [61]. The basic idea behind this algorithm is the implemen-
tation of appropriate differential equations describing the time evolution of volume
elements around the orbits of the dynamical system, instead of defining these vol-
umes through deviation vectors whose evolution is governed by the usual variational
equations (8).

Apart from the actual numerical computation of the values of the LCEs, methods
for the theoretical estimation of those values have been also developed. For example,
Li and Chen [90] provided a theorem for the estimation of lower and upper bounds
for the values of all LCEs in the case of discrete maps. These results were also
generalized for the case of continues dynamical systems [91]. The validity of these
estimates was demonstrated by a comparison between the estimated bounds and
the numerically computed spectrum of LCEs of some specific dynamical systems
[90, 91].

Finally, let us refer to a powerful analytical method which allows one to verify
the existence of positive LCEs for a dynamical system, the so-called cone technique.
The method was suggested by Wojtkowski [142] and has been extensively applied
for the study of chaotic billiards [142, 143, 43, 97] and geodesic flows [41, 42, 19].
A concise description of the techniques can also be found in [7] [25, Sect. 3.13].
Considering the space R

n a cone Cγ , with γ > 0, centered around R
n−k is

Cγ = {(u, v) ∈ R
k × R

n−k : ‖u‖ < γ ‖v‖} ∪ (0, 0). (83)

Note that {0} × R
n−k ⊂ Cγ for every γ . In the particular case of n = 3, k = 2, Cγ

corresponds to the usual 3-dimensional cone, while in the case of the plane (n = 2)
a cone Cγ around an axis L is the set of vectors of R

2 that make angle φ < arctan γ
with the line L . In the case of Hamiltonian systems (and symplectic maps) a cone
can get the simple form δq·δp > 0. Finding an invariant family of cones (83) in TxS,
which are mapped strictly into themselves by dxΦ

t , guarantees that the values of the
n− k largest LCEs are positive [142, 143]. We emphasize that the cone technique is
not used for the explicit numerical computation of the LCEs, but for the analytical
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proof of the existence of positive LCEs, providing at the same time some bounds
for their actual values.

6.4.1 Continuous QR Decomposition Methods

The QR decomposition methods allow the computation of all or of the p (1 < p <

2N ) largest LCEs. Let us discuss in more detail the developed procedure for both
cases following mainly [62, 36, 94].

Computing the complete spectrum of LCEs

The basic idea of the method is to avoid directly solving the differential equation
(10), by requiring Y(t) = Q(t)R(t) where Q(t) is orthogonal and R(t) is upper tri-
angular with positive diagonal elements, according to Theorem 4. With this decom-
position, one can write (10) into the form

QTQ̇ + ṘR−1 = QTAQ,

where, for convenience, we dropped out the explicit dependence of the matrices on
time t , i.e., Q(t) ≡ Q. Since QTQ̇ is skew and ṘR−1 is upper triangular, one reads
off the differential equations

Q̇ = QS, (84)

where S is the skew-symmetric matrix

S = QTQ̇

with elements

Si j =
⎧⎨
⎩

(QTAQ)i j i > j
0 i = j

−(QTAQ) j i i < j
, i, j = 1, 2, . . . , 2N , (85)

and

Ṙpp

Rpp
= (QTAQ)pp, p,= 1, 2, . . . , 2N (86)

where Rpp are the diagonal elements of R. As we have already seen in (82) the
LCEs are related to the elements Rpp, through

χp = lim
t→∞

1

t
ln Rpp(t).
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Thus, in order to compute the spectrum of LCEs only (84) and (86) have to be
solved simultaneously with the equations of motion (2). In practice, the knowledge
of matrix R is not necessary for the actual computation of the LCEs. Noticing that

d

dt

(
ln Rpp

) = Ṙpp

Rpp
= (QTAQ)pp = qp · Aqp, (87)

where qp is the pth column vector of Q, we can compute the LCEs using

χp = lim
t→∞

1

t

∫ t

0
qp · Aqpdt.

In practice, the LCEs can be estimated through a recursive formula. Let

X p(kτ ) = 1

kτ

∫ kτ

0
qp · Aqpdt.

Then we have

X p ((k + 1)τ ) = 1

(k + 1)τ

∫ (k+1)τ

0
qp · Aqpdt

= 1

(k + 1)τ

∫ kτ

0
qp · Aqpdt + 1

(k + 1)τ

∫ (k+1)τ

kτ
qp · Aqpdt.

Replacing the first integral with kτ X p(kτ ) we get

X p ((k + 1)τ ) = k

k + 1
X p(kτ ) + 1

(k + 1)τ

∫ (k+1)τ

kτ
qp · Aqpdt, (88)

and

χp = lim
k→∞

X p(kτ ). (89)

The basic difference between the discrete QR decomposition method presented in
Sect. 6.3, and the continuous QR method presented here, is that in the first method
the orthonormalization is performed numerically at discrete time steps, while the
latter method seeks to maintain the orthogonality via solving differential equations
that encode the orthogonality continuously.

Computation of the p > 1 largest LCEs

If we want to compute the p largest LCEs, with 1 < p < 2N , we change (10) to

Ẏ(t) = A(t) Y(t) , with Y(0)TY(0) = Ip, (90)
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where Y(t) is in practice, the 2N × p matrix having as columns the p deviation vec-
tors w1(t),w2(t), . . . ,wp(t). Applying Theorem 4 we get Y(t) = Q(t)R(t) where
Q(t) is orthogonal so that the identity QTQ = I holds but not the QQT = I. Then
from (90) we get

Ṙ = (QTAQ − S
)

R,

where S = QTQ̇ is a p × p matrix whose elements are given by (85) for
i, j = 1, 2, . . . , p. Since R is invertible, from the relations

ṘR−1 = QTAQ − S

and

Q̇ = AQ − QṘR−1, (91)

we obtain

Q̇ = (A − QQTA + QSQT)Q,

or

Q̇ = H(Q, t)Q, (92)

with

H(Q, t) = A − QQTA + QSQT.

Notice that the matrix H(Q, t) in not necessarily skew-symmetric, and the term
QQT is responsible for lack of skew-symmetry in H. Of course for p = 2N (92)
reduces to equation Q̇ = QS (84). The evolution of the diagonal elements of R are
again governed by (86), but for p < 2N , and so the p largest LCEs can be computed
again from (87, 88, 89).

The main difference with respect to the case of the computation of the whole
spectrum is the numerical difficulties arising in solving (92), since H is not skew-
symmetric as was matrix S in (84). Due to this difference usual numerical integration
techniques fail to preserve the orthogonality of matrix Q.

A central observation of [36] is that the matrix H has a weak skew-symmetry
property. The matrix H is called weak skew-symmetric if

QT (H(Q, t) + HT(Q, t)
)

Q = 0, whenever QTQ = Ip.

A matrix H is said to be strongly skew-symmetric if it is skew-symmetric, i.e.,
HT = −H. Christiansen and Rugh [26] proposed a method according to which, the
numerically unstable equations (91) for the continuous orthonormalization could be



Lyapunov Characteristic Exponents 115

stabilized by the addition of an appropriate dissipation term. This idea was also used
in [18], where it was shown that it is possible to reformulate (92) so that H becomes
strongly skew-symmetric and thus, achieve a numerically stable algorithm for the
computation of few LCEs.

6.4.2 Discrete and Continuous Methods Based on the SVD Procedure

An alternative way of evaluating the LCEs is obtained by applying the SVD pro-
cedure on the fundamental 2N × 2N matrix Y(t), which defines the evolution of
deviation vectors through (9) and (12) for continuous and discrete systems, respec-
tively. According to the SVD algorithm a 2N × p matrix (p ≤ 2N ) B can be written
as the product of a 2N × p column-orthogonal matrix U, a p× p diagonal matrix F
with positive or zero elements σi , i = 1, . . . , p (the so-called singular values), and
the transpose of a p × p orthogonal matrix V:

B = U · F · VT.

We note that matrices U and V are orthogonal so that

UT · U = VT · V = Ip. (93)

For a more detailed description of the SVD method, as well as an algorithm for its
implementation the reader is referred to [107, Sect. 2.6] and references therein. The
SVD is unique up to permutations of corresponding columns, rows, and diagonal
elements of matrices U, V, and F respectively. Advanced numerical techniques for
the computation of the singular values of a product of many matrices can be found
for example in [130, 101].

So, for the purposes of our study let

Y = U · F · VT, (94)

where we dropped out as before, the explicit dependence of the matrices on time
t . In those cases where all singular values are different, a unique decomposition
can be achieved by the additional request of a strictly monotonically decreasing
singular value spectrum, i.e., σ1(t) > σ2(t) > · · · > σ2N (t). Multiplying (94) with
the transpose

YT = V · FT · UT,

from the left we get

YT · Y = V · FT · UT · U · F · VT = V · diag(σ 2
i (t)) · VT, (95)

where (93) has been used. From (95) we see that the eigenvalues of the diagonal
matrix diag(σ 2

i (t)), i.e., the squares of the singular values of Y(t), are equal to the
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eigenvalues of the symmetric matrix YTY. Then from point 4 of the MET we con-
clude that the LCEs are related to the singular values of Y(t) through [62, 130]

χp = lim
t→∞

1

t
ln σi (t), p = 1, 2, . . . , 2N ,

which implies that the LCEs can be evaluated as the limits for t → ∞ of the time
rate of the logarithms of the singular values.

Theoretical aspects of the SVD technique, as well as a detailed study of its ability
to approximate the spectrum of LCEs can be found in [101, 37, 38]. Continuous
[67, 62, 39] and discrete [130] versions of the SVD algorithm have been applied for
the computation of few or of all LCEs, although this approach is not widely used. A
basic problem of these methods is that they fail to compute the spectrum of LCEs if
it is degenerate, i.e., when two or more LCEs are equal or very close to each other,
due to the appearance of ill-conditioned matrices.

7 Chaos Detection Techniques

A simple, qualitative way of studying the dynamics of a Hamiltonian system is by
plotting the successive intersections of its orbits with a Poincaré surface of sec-
tion (PSS) (e.g., [72] [92, pp. 17–20]). Similarly, in the case of symplectic maps
one simply plots the phase space of the system. This qualitative method has been
extensively applied to 2d maps and to 2D Hamiltonians, since in these systems the
PSS is a 2-dimensional plane. In such systems one can visually distinguish between
regular and chaotic orbits since the points of a regular orbit lie on a torus and form a
smooth closed curve, while the points of a chaotic orbit appear randomly scattered.
In 3D Hamiltonian systems (or 4d symplectic maps), however, the PSS (or the phase
space) is 4-dimensional and the behavior of the orbits cannot be easily visualized.
Things become even more difficult and deceiving for multidimensional systems.
One way to overcome this problem is to project the PSS (or the phase space) to
spaces with lower dimensions (see, e.g., [139, 140, 105]) although these projections
are often very complicated and difficult to interpret. Thus, we need fast and accurate
numerical tools to give us information about the regular or chaotic character of
orbits, mainly when the dynamical system has many degrees of freedom.

The most commonly employed method for distinguishing between regular and
chaotic behavior is the evaluation of the mLCE χ1, because if χ1 > 0 the orbit is
chaotic. The main problem of using the value of χ1 as an indicator of chaoticity
is that, in practice, the numerical computation may take a huge amount of time,
in particular for orbits which stick to regular ones for a long time before showing
their chaotic behavior. Since χ1 is defined as the limit for t → ∞ of the quantity
X1(t) (54), the time needed for X1(t) to converge to its limiting value is not known
a priori and may become extremely long. Nevertheless, we should keep in mind that
the mLCE gives us more information than just characterizing an orbit as regular or
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chaotic, since it also quantifies the notion of chaoticity by providing a characteristic
timescale for the studied dynamical system, namely the Lyapunov time (51).

In order to address the problem of the fast and reliable determination of the
regular or chaotic nature of orbits, several methods have been developed over the
years with varying degrees of success. These methods can be divided in two major
categories: Some are based on the study of the evolution of deviation vectors from
a given orbit, like the computation of χ1, while others rely on the analysis of the
particular orbit itself.

Among other chaoticity detectors, belonging to the same category with the eval-
uation of the mLCE, are the fast Lyapunov indicator (FLI) [58, 59, 56, 89, 49, 69]
and its variants [4, 5], the smaller alignment index (SALI) [122, 124, 125] and its
generalization, the so-called generalized alignment index (GALI) [126, 127], the
mean exponential growth of nearby orbits (MEGNO) [28, 29], the relative Lyapunov
indicator (RLI) [115, 116], the average power law exponent (APLE) [95], as well as
methods based on the study of spectra of quantities related to the deviation vectors
like the stretching numbers [57, 93, 135, 138], the helicity angles (the angles of
deviation vectors with a fixed direction) [32], the twist angles (the differences of
two successive helicity angles) [33], or the study of the differences between such
spectra [88, 136].

In the category of methods based on the analysis of a time series constructed by
the coordinates of the orbit under study, one may list the frequency map analysis of
Laskar [83, 86, 84, 85], the “0–1” test [64, 65], the method of the low-frequency
spectral analysis [137, 81], the “patterns method” [120, 121], the recurrence plots
technique [147, 148], and the information entropy index [100]. One could also refer
to several ideas presented by various authors that could be used in order to distin-
guish between chaoticity and regularity, like the differences appearing for regular
and chaotic orbits in the time evolutions of their correlation dimension [50], in the
time averages of kinetic energies related to the virial theorem [74], and in the sta-
tistical properties of the series of time intervals between successive intersections of
orbits with a PSS [80].

A systematic and detailed comparative study of the efficiency and reliability of
the various chaos detection techniques has not been done yet, although comparisons
between some of the existing methods have been performed sporadically in studies
of particular dynamical systems [122, 125, 132, 133, 82, 95, 6].

Let us now focus our attention on the behavior of the FLI and of the GALI and
on their connection to the LCEs. The FLI was introduced as an indicator of chaos
in [58, 59] and after some minor modifications in its definition, it was used for the
distinction between resonant and not resonant regular motion [56, 49]. The FLI is
defined as

FLI(t) = sup
t

ln ‖w(t)‖,

where w(t) is a deviation vector from the studied orbit at point x(t), which initially
had unit norm, i.e., ‖w(0)‖ = 1. In practice, FLI(t) registers the maximum length
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that an initially unitary deviation vector attains from the beginning of its evolution
up to the current time t . Using the notation appearing in (59), the FLI can be com-
puted as

FLI(kτ ) = sup
k

k∑
i=1

ln
Di

D0
= sup

k

k∑
i=1

lnαi ,

with the initial norm D0 of the deviation vector being D0 = 1.
According to (62) the norm of w(t) increases linearly in time in the case of regular

orbits. On the other hand, in the case of chaotic orbits the norm of any deviation vec-
tor exhibits an exponential increase in time, with an exponent which approximates
χ1 for t → ∞. Thus, the norm of a deviation vector reaches rapidly completely
different values for regular and chaotic orbits, which actually differ by many orders
of magnitude. This behavior allows FLI to discriminate between regular orbits, for
which FLI has relatively small values, and chaotic orbits, for which FLI gets very
large values.

The main difference of FLI with respect to the evaluation of the mLCE by (59)
is that FLI registers the current value of the norm of the deviation vector and does
not try to compute the limit value, for t → ∞, of the mean of stretching numbers
as χ1 does. By dropping the time average requirement of the stretching numbers,
FLI succeeds in determining the nature of orbits faster than the computation of the
mLCE.

The generalized alignment index of order p (GALIp) is determined through the
evolution of 2 ≤ p ≤ 2N initially linearly independent deviation vectors wi (0), i =
1, 2, . . . , p and so it is more related to the computation of many LCEs than to the
computation of the mLCE. The evolved deviation vectors wi (t) are normalized from
time to time in order to avoid overflow problems, but their directions are left intact.
Then, according to [126] GALIp is defined to be the volume of the p-parallelogram
having as edges the p unitary deviation vectors ŵi (t), i = 1, 2, . . . , p

GALIp(t) = ‖ŵ1(t) ∧ ŵ2(t) ∧ · · · ∧ ŵp(t)‖. (96)

In [126] the value of GALIp is computed according to (105), while in [2, 127] a
more efficient numerical technique based on the SVD algorithm is applied. From the
definition of GALIp it becomes evident that if at least two of the deviation vectors
become linearly dependent, the wedge product in (96) becomes zero and the GALIp

vanishes.
In the case of a chaotic orbit all deviation vectors tend to become linearly depen-

dent, aligning in the direction which corresponds to the mLCE and GALIp tends to
zero exponentially following the law [126]:

GALIp(t) ∼ e−[(χ1−χ2)+(χ1−χ3)+···+(χ1−χp)]t ,
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where χ1, χ2, . . . , χp are the p largest LCEs. On the other hand, in the case of
regular motion all deviation vectors tend to fall on the N -dimensional tangent space
of the torus on which the motion lies. Thus, if we start with p ≤ N general devi-
ation vectors they will remain linearly independent on the N -dimensional tangent
space of the torus, since there is no particular reason for them to become linearly
dependent. As a consequence GALIp remains practically constant for p ≤ N . On
the other hand, GALIp tends to be zero for p > N , since some deviation vectors
will eventually become linearly dependent, following a particular power law which
depends on the dimensionality N of the torus and the number p of deviation vectors.
So, the generic behavior of GALIp for regular orbits lying on N -dimensional tori is
given by [126]:

GALIp(t) ∼
{

constant if 2 ≤ p ≤ N
1

t2(p−N ) if N < p ≤ 2N
. (97)

The different behavior of GALIp for regular orbits, where it remains different
from zero or tends to zero following a power law, and for chaotic orbits, where
it tends exponentially to zero, makes GALIp an ideal indicator of chaoticity inde-
pendent of the dimensions of the system [126, 127, 15]. GALIp is a generalization
of the SALI method [122, 124, 125] which is related to the evolution of only two
deviation vectors. Actually GALI2 ∝ SALI. However, GALIp provides significantly
more detailed information on the local dynamics and allows for a faster and clearer
distinction between order and chaos. It was shown recently [27, 127] that GALIp

can also be used for the determination of the dimensionality of the torus on which
regular motion occurs.

As we discussed in Sect. 6.1 the alignment of all deviation vectors to the direction
corresponding to the mLCE is a basic problem for the computation of many LCEs,
which is overcome by successive orthonormalizations of the set of deviation vectors.
The GALIs on the other hand, exploit exactly this “problem” in order to determine
rapidly and with certainty the regular or chaotic nature of orbits.

It was shown in Sect. 4.1 that the values of all LCEs (and therefore the value of
the mLCE) do not depend on the particular used norm. On the other hand, the quan-
titative results of all chaos detection techniques based on quantities related to the
dynamics of the tangent space on a finite time, depend on the used norm, or on the
coordinates of the studied system. For example, the actual values of the finite time
mLCE X1(t) (54) will be different for different norms, or for different coordinates,
although its limiting value for t → ∞, i.e., the mLCE χ1, will be always the same.
Other chaos detection methods, like the FLI and the GALI, which depend on the
current values of some norm-related quantities and not on their limiting values for
t → ∞ will attain different values for different norms and/or coordinate systems.
Although the values of these indices will be different, one could expect that their
qualitative behavior would be independent of the chosen norm and the used coor-
dinates, since these indices depend on the geometrical properties of the deviation
vectors. For example, the GALI quantifies the linear dependence or independence
of deviation vectors, a property which obviously does not depend on the particular
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used norm or coordinates. Indeed, some arguments explaining the independence of
the behavior of the GALI method on the chosen coordinates can be found in [126].
Nevertheless, a systematic study focused on the influence of the used norm on the
qualitative behavior of the various chaos indicators has not been performed yet,
although it would be of great interest.

8 LCEs of Dissipative Systems and Time Series

The presentation of the LCEs in this report was mainly done in connection to con-
servative dynamical systems, i.e., autonomous Hamiltonian flows and symplectic
maps. The restriction to conservative systems is not necessary since the theory of
LCEs, as well as the techniques for their evaluation are valid for general dynamical
systems like dissipative ones. In addition, within what is called time series analysis
(see, e.g., [78]) it is of great interest to measure LCEs in order to understand the
underlying dynamics that produces any time series of experimental data. For the
completeness of our presentation we devote the last section of our report to a concise
survey of results concerning the LCEs of dissipative systems and time series.

8.1 Dissipative Systems

In contrast to Hamiltonian systems and symplectic maps for which the conservation
of the phase space volume is a fundamental constraint of the motion, a dissipative
system is characterized by a decrease of the phase space volume with increasing
time. This leads to the contraction of motion on a surface of lower dimensionality
than the original phase space, which is called attractor. Thus any dissipative dynam-
ical system will have at least one negative LCE, the sum of all its LCEs (which
actually measures the contraction rate of the phase space volume through (43)) is
negative and after some initial transient time the motion occurs on an attractor.

Any continuous n-dimensional dissipative dynamical system without a stationary
point (which is often called a fixed point) has at least one LCE equal to zero [70] as
we have already discussed in Sect. 4.5. For regular motion the attractor of dissipa-
tive flows represents a fixed point having all its LCEs negative, or a quasiperiodic
orbit lying on a p-dimensional torus (p < n) having p zero LCEs while the rest
n − p exponents are negative. For dissipative flows in three or more dimensions
there can also exist attractors having a very complicated geometrical structure which
are called “strange.”

Strange attractors have one or more positive LCEs implying that the motion on
them is chaotic. The exponential expansion indicated by a positive LCE is incompat-
ible with motion on a bounded attractor unless some sort of folding process merges
separated orbits. Each positive exponent corresponds to a direction in which the sys-
tem experiences the repeated stretching and folding that decorrelates nearby orbits
on the attractor. A simple geometrical construction of a hypothetical strange attrac-
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tor where orbits are bounded despite the fact that nearby orbits diverge exponentially
can be found in [92, Sect. 1.5].

The numerical methods for the evaluation of the mLCE, of the p (1 < p < n)
largest LCEs and of the whole spectrum of them, presented in Sects. 5 and 6, can be
applied also to dissipative systems. Actually, many of these techniques were initially
used in studies of dissipative models [99, 119, 61, 62]. For a detailed description of
the dynamical features of dissipative systems, as well as of the behavior of LCEs
for such systems the reader is referred, for example, to [103, 44] [92, Sect. 1.5,
Chaps. 7, and 8] and references therein.

8.2 Computing LCEs from a Time Series

A basic task in real physical experiments is the understanding of the dynamical
properties of the studied system by the analysis of some observed time series of
data. The knowledge of the LCEs of the system is one important step toward the
fulfillment of this goal. Usually, we have no knowledge of the nonlinear equations
that govern the time evolution of the system which produces the experimental data.
This lack of information makes the computation of the spectrum of LCEs of the
system a hard and challenging task.

The methods developed for the determination of the LCEs from a scalar time
series have as starting point the technique of phase space reconstruction with delay
coordinates [104, 134, 112] [78, Chaps. 3 and 9]. This technique is used for recre-
ating a d-dimensional phase space to capture the behavior of the dynamical system
which produces the observed scalar time series.

Assume that we have ND measurements of a dynamical quantity x taken at times
tn = t0 + nτ , i.e., x(n) ≡ x(t0 + nτ ), n = 0, 1, 2, . . . , ND − 1. Then we produce
Nd = ND − (d − 1)T d-dimensional vectors x(tn) from the x’s as

x(tn) = [ x(n) x(n + T ) . . . x(n + (d − 1)T )
]T

,

where T is the (integer) delay time. With this procedure we construct Nd points in
a d-dimensional phase space, which can be treated as successive points of a hypo-
thetical orbit. We assume that the evolution of x(tn) to x(tn+1) is given by some map
and we seek to evaluate the LCEs of this orbit.

The first algorithm to compute LCEs for a time series was introduced by Wolf et
al. [144]. According to their method (which is also referred as the direct method),
in order to compute the mLCE we first locate the nearest neighbor (in the Euclidean
sense) x(tk) to the initial point x(t0) and define the corresponding deviation vector
w(t0) = x(t0) − x(tk) and its length L(t0) = ‖w(t0)‖. The points x(t0) and x(tk) are
considered as initial conditions of two nearby orbits and are followed in time. Then
the mLCE is evaluated by the method discussed in Sect. 5.2, which approximates
deviation vectors by differences of nearby orbits. So, at some later time tm1 (which
is fixed a priori or determined by some predefined threshold violation of the vector’s
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length) the evolved deviation vector w′(tm1 ) = x(tm1 ) − x(tk+m1 ) is normalized and
its length L ′(tm1 ) = ‖w′(tm1 )‖ is registered. The “normalization” of the evolved
deviation vector is done by looking for a new data point, say x(tl), whose distance
L(tm1 ) = ‖x(tm1 ) − x(tl)‖ from the studied orbit is small and the corresponding
deviation vector w(tm1 ) = x(tm1 ) − x(l) has the same direction with w′(tm1 ). Of
course with finite amount of data, one cannot hope to find a replacement point x(l)
which falls exactly on the direction of w′(tm1 ) but chooses a point that comes as
close as possible. Assuming that such point is found the procedure is repeated and
an estimation X1(tmn ) of the mLCE χ1 is obtained by an equation analogous to (56):

X1(tmn ) = 1

tmn − t0

n∑
i=1

ln
L ′

1(tmi )

L(tmi−1 )
,

with m0 = 0. A Fortran code of this algorithm with fixed time steps between
replacements of deviation vectors is given in [144].

Generalizing this technique by evolving simultaneously p > 1 deviation vectors,
i.e., following the evolution of the orbit under study, as well as of p nearby orbits,
we can, in principle, evaluate the p-mLCE χ

(p)
1 of the system, which is equal to the

sum of the p largest 1-LCEs (see (67)). Then the values of χi i = 1, 2, . . . , p can be
computed from (74). This procedure corresponds to a variant of the standard method
for computing the LCEs, presented in [119] and discussed in Sect. 6.1, in that devi-
ation vectors are defined as differences of neighboring orbits. The implementation
of this approach requires the repeated replacement of the deviation vectors, i.e., the
replacement of the p points close to the evolved orbit under consideration, when
the lengths of the vectors exceed some threshold value. This replacement should be
done in a way that the volume of the corresponding p-parallelogram is small, and
in particular smaller than the replaced volume, and the new p vectors point more or
less to the same direction like the old ones. This procedure is explained in detail in
[144] for the particular case of the computation of χ (2)

1 = χ1 + χ2, where a triplet
of points is involved.

It is clear that in order to achieve a good replacement of the evolved p vectors,
which will lead to a reliable estimation of the LCEs, the numerical data have to
satisfy many conditions. Usually this is not feasible due to the limited number of
data points. So the direct method of [144] does not yield very precise results for the
LCEs. Another limitation of the method, which was pointed out in Wolf et al. [144],
is that it should not be used for finding negative LCEs which correspond to shrink-
ing directions, due to a cut off in small distances implied mainly by the level of
noise of the experimental data. An additional disadvantage of the direct method is
that many parameters which influence the estimated values of the LCEs like the
embedding dimension d, the delay time T , the tolerances in direction angles during
vector replacements and the evolution times between replacements have to be tuned
properly in order to obtain reliable results.

A different approach for the computation of the whole spectrum of LCEs is based
on the numerical determination of matrix Yn , n = 1, 2, . . ., of (12), which defines
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the evolution of deviation vectors in the reconstructed phase space. This method
was introduced in [118] and was studied in more detail in [44, 45] (see also [78,
Chap. 11]). According to this approach, often called the tangent space method,
matrix Yn is evaluated for each point of the studied orbit through local linear fits
of the data. In particular, for every point x(tn) of the orbit we find all its neighboring
points, i.e., points whose distance from x(tn) is less than a predefined small value ε.
Each of these point define a deviation vector. Then we find the next iteration of all
these points and see how these vectors evolve. Keeping only the evolved vectors hav-
ing length less than ε we evaluate matrix Yn through a least-square-error algorithm.
By repeating this procedure for the whole length of the studied orbit we are able to
evaluate at each point of the orbit matrix Yn which defines the evolution of deviation
vectors over one time step. Then by applying the QR decomposition version of the
standard method, which was presented in Sect. 6.3, we estimate the values of the
LCEs. The corresponding algorithm is included in the TISEAN software package
of nonlinear time series analysis methods developed by Hegger et al. [71]. It is also
worth mentioning that Brown et al. [17] improved the tangent space method by
using higher order polynomials for the local fit.

If, on the other hand, we are interested only in the evaluation of the mLCE of
a time series we can apply the algorithm proposed by Rosenstein et al. [111] and
Kantz [77]. The method is based on the statistical study of the evolution of dis-
tances of neighboring orbits. This approach is in the same spirit of Wolf et al. [144]
although being simpler since it compares distances and not directions. A basic dif-
ference with the direct method is that for each point of the reference orbit not one,
but several neighboring orbits are evaluated leading to improved estimates of the
mLCE with smaller statistical fluctuations even in the case of small data sets. This
algorithm is also included in the TISEAN package [71], while its Fortran and C
codes can be found in [78, Appendix B].
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Appendix A:
Exterior Algebra and Wedge Product: Some Basic Notions

We present here some basic results of the exterior algebra theory along with an
introduction to the theory of wedge products following [1] and textbooks such as
[128, 68, 129]. We also provide some simple illustrative examples of these results.

Let us consider an M-dimensional vector space V over the field of real numbers
R. The exterior algebra of V is denoted by Λ(V ) and its multiplication, known as
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the wedge product or the exterior product, is written as ∧. The wedge product is
associative:

(u ∧ v) ∧ w = u ∧ (v ∧ w),

for u, v,w ∈ V and bilinear

(c1u + c2v) ∧ w = c1(u ∧ w) + c2(v ∧ w),

w ∧ (c1u + c2v) = c1(w ∧ u) + c2(w ∧ v),

for u, v,w ∈ V and c1, c2 ∈ R. The wedge product is also alternating on V

u ∧ u = 0,

for all vectors u ∈ V . Thus we have that

u ∧ v = −v ∧ u,

for all vectors u, v ∈ V and

u1 ∧ u2 ∧ · · · ∧ uk = 0, (98)

whenever u1,u2, . . . ,uk ∈ V are linearly dependent. Elements of the form
u1 ∧ u2 ∧ · · · ∧ uk with u1,u2, . . . ,uk ∈ V are called k-vectors. The subspace of
Λ(V ) generated by all k-vectors is called the k-th exterior power of V and denoted
by Λk(V ).

Let {ê1, ê2, . . . , êM} be an orthonormal basis of V , i.e., êi , i = 1, 2, . . . , M are
linearly independent vectors of unit magnitude and

êi · ê j = δi j ,

where “ · ” denotes the inner product in V and

δi j =
{

1 for i = j
0 for i �= j

.

It can be easily seen that the set

{êi1 ∧ êi2 ∧ · · · ∧ êik | 1 ≤ i1 < i2 < · · · < ik ≤ M} (99)

is a basis of Λk(V ) since any wedge product of the form u1 ∧ u2 ∧ · · · ∧ uk can
be written as a linear combination of the k-vectors of (99). This is true because
every vector ui , i = 1, 2, . . . , k can be written as a linear combination of the basis
vectors êi , i = 1, 2, . . . , M and using the bilinearity of the wedge product this can
be expanded to a linear combination of wedge products of those basis vectors. Any



Lyapunov Characteristic Exponents 125

wedge product in which the same basis vector appears more than once is zero, while
any wedge product in which the basis vectors do not appear in the proper order can
be reordered, changing the sign whenever two basis vectors change places. The
dimension dk of Λk(V ) is equal to the binomial coefficient:

dk = dimΛk(V ) =
(

M
k

)
= M!

k!(M − k)!
.

Ordering the elements of basis (99) of Λk(V ) according to the standard lexico-
graphical order

ωi = êi1 ∧ êi2 ∧ · · · ∧ êik , 1 ≤ i1 < i2 < · · · < ik ≤ M, i = 1, 2, · · · , dk, (100)

any k-vector ū ∈ Λk(V ) can be represented as

ū =
dk∑

i=1

ūiωi , ūi ∈ R. (101)

A k-vector which can be written as the wedge product of k linear independent vec-
tors of V is called decomposable. Of course, if the k vectors are linearly dependent
we get the zero k-vector (98). Note that not all k-vectors are decomposable. For
example, the 2-vector ū = e1 ∧ e2 + e3 ∧ e4 ∈ Λ2(R4) is not decomposable as it
cannot be written as u1 ∧ u2 with u1,u2 ∈ R

4.
Let us consider a decomposable k-vector ū = u1 ∧ u2 ∧ · · · ∧ uk . Then the coef-

ficients ūi in (101) are the minors of matrix U having as columns the coordinates of
vectors ui , i = 1, 2, . . . , k with respect to the orthonormal basis êi , i = 1, 2, . . . , M .
In matrix form we have

[
u1 u2 · · · uk

] = [ ê1 ê2 · · · êM
] ·
⎡
⎢⎢⎢⎣

u11 u12 · · · u1k

u21 u22 · · · u2k
...

...
...

uM1 uM2 · · · uMk

⎤
⎥⎥⎥⎦ = [ ê1 ê2 · · · êM

] · U,

(102)
where ui j , i = 1, 2, . . . , M , j = 1, 2, . . . , k are real numbers. Then, the wedge
product u1 ∧ u2 ∧ · · · ∧ uk is written as

ū = u1 ∧ u2 ∧ · · · ∧ uk =
dk∑

i=1

ūiωi =

∑
1≤i1<i2<···<ik≤M

∣∣∣∣∣∣∣∣∣

ui11 ui12 · · · ui1k

ui21 ui22 · · · ui2k
...

...
...

uik 1 uik 2 · · · uik k

∣∣∣∣∣∣∣∣∣
êi1 ∧ êi2 ∧ · · · ∧ êik ,

(103)
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where the sum is performed over all possible combinations of k indices out of the
M total indices and | | denotes the determinant. So, the coefficient of a particular
k-vector êi1 ∧ êi2 ∧ · · · ∧ êik is the determinant of the k × k submatrix of the M × k
matrix of coefficients appearing in (102) formed by its i1, i2, . . ., ik rows.

The inner product on V induces an inner product on each vector space Λk(V ) as
follows: Considering two decomposable k-vectors

ū = u1 ∧ u2 ∧ · · · ∧ uk and v̄ = v1 ∧ v2 ∧ · · · ∧ vk,

with ui , v j ∈ V , i, j = 1, 2, . . . , k, the inner product of ū, v̄ ∈ Λk(V ) is defined by

〈ū, v̄〉k
def=

∣∣∣∣∣∣∣∣∣

u1 · v1 u1 · v2 · · · u1 · vk

u2 · v1 u2 · v2 · · · u2 · vk
...

...
...

uk · v1 uk · v2 · · · uk · vk

∣∣∣∣∣∣∣∣∣
= ∣∣UT · V

∣∣ , (104)

where U, V are matrices having as columns the coefficients of vectors ui , vi ,
i = 1, 2, . . . , k with respect to the orthonormal {ê1, ê2, . . . , êM} (see (102)). Since
every element of Λk(V ) is a sum of decomposable elements, this definition extends
by bilinearity to any k-vector. Obviously for the basis (100) of Λk(V ) we have

〈ωi ,ω j 〉k = δi j , i, j = 1, 2, . . . , dk,

implying that the basis is orthonormal. Inner product (104) defines a norm ‖ ‖ for
k-vectors by

‖ū‖ =
√
〈ū, ū〉k =

√∣∣UT · U
∣∣.

Thus, the norm of a decomposable k-vector (103) is given by

‖ū‖ = ‖u1 ∧ u2 ∧ · · · ∧ uk‖ =
√∣∣UT · U

∣∣ =
(

dk∑
i=1

ū2
i

)1/2

=
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
1≤i1<i2<···<ik≤M

∣∣∣∣∣∣∣∣∣

ui11 ui12 · · · ui1k

ui21 ui22 · · · ui2k
...

...
...

uik 1 uik 2 · · · uik k

∣∣∣∣∣∣∣∣∣

2⎫⎪⎪⎪⎬
⎪⎪⎪⎭

1/2

,

(105)

and it measures the volume vol(Pk) of the k-parallelogram Pk having as edges the k
vectors u1,u2, · · · ,uk , since this volume is defined as (see, e.g., [75, p. 472])

vol(Pk) =
√∣∣UT · U

∣∣ . (106)
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The use of a different orthonormal basis does not change the numerical value of
vol(Pk). This can be easily seen as follows: Let f̂i , i = 1, 2, · · · , M be a different
orthonormal basis of V related to basis êi through

[
ê1 ê2 · · · êM

] = [ f̂1 f̂2 · · · f̂M

] · A,

where A is an orthogonal M × M matrix, i.e., A−1 = AT. From (102) we get

[
u1 u2 · · · uk

] = [ f̂1 f̂2 · · · f̂M

] · A · U,

whence the volume vol′(Pk) with respect to the new basis f̂i , i = 1, 2, · · · , M is
given by

vol′(Pk) =
√∣∣(A · U)T · A · U

∣∣ =
√∣∣UT · A−1 · A · U

∣∣ =
√∣∣UT · U

∣∣ = vol(Pk),

where the orthogonality of A was used. This result is not surprising since an orthog-
onal matrix corresponds to a rotation that leaves unchanged the norms of vectors
and the angles between them.

Finally we note that the equality

∣∣UTU
∣∣ = ∑

1≤i1<i2<···<ik≤M

∣∣∣∣∣∣∣∣∣

ui11 ui12 · · · ui1k

ui21 ui22 · · · ui2k
...

...
...

uik 1 uik 2 · · · uik k

∣∣∣∣∣∣∣∣∣

2

appearing in (105) is the so-called Lagrange identity (e.g., [68, p. 108], [16, p. 103]).

An Illustrative Example

In order to illustrate the content of the previous section we consider here a specific
example. Let V be the vector space of M = 4-dimensional real vectors, i.e., V = R

4

and

ê1 = (1, 0, 0, 0) , ê2 = (0, 1, 0, 0) , ê3 = (0, 0, 1, 0) , ê4 = (0, 0, 0, 1) , (107)

the usual orthonormal basis of R
4. Then the lexicographically ordered orthonormal

basis (100) of the d2 = 6-dimensional vector space Λ2(R4) is

ω1 = ê1 ∧ ê2 , ω2 = ê1 ∧ ê3 , ω3 = ê1 ∧ ê4 ,

ω4 = ê2 ∧ ê3 , ω5 = ê2 ∧ ê4 , ω6 = ê3 ∧ ê4 .
(108)

The Λ3(R3) vector space has dimension d3 = 4 and the set
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y1 = ê1 ∧ ê2 ∧ ê3 , y2 = ê1 ∧ ê2 ∧ ê4 ,

y3 = ê1 ∧ ê3 ∧ ê4 , y4 = ê2 ∧ ê3 ∧ ê4 ,

as an orthonormal basis, while the d4 = 1-dimensional vector space Λ4(R4) is
spanned by vector:

x1 = ê1 ∧ ê2 ∧ ê3 ∧ ê4.

Let us now consider four linearly independent vectors u1, u2, u3, u4 of R
4 and

the matrix

U = [ui j ] = [ u1 u2 u3 u4 ] =

⎡
⎢⎢⎣

u11 u12 u13 u14

u21 u22 u23 u24

u31 u32 u33 u34

u41 u42 u43 u44

⎤
⎥⎥⎦ , i, j = 1, 2, 3, 4,

having as columns the coordinates of these vectors with respect to the basis (107) of
R

4.
Considering basis (108) of Λ2(R4) the 2-vector u1 ∧ u2 is given by

u1 ∧ u2 =
∣∣∣∣u11 u12

u21 u22

∣∣∣∣ω1 +
∣∣∣∣ u11 u12

u31 u32

∣∣∣∣ω2 +
∣∣∣∣ u11 u12

u41 u42

∣∣∣∣ω3 +

+
∣∣∣∣ u21 u22

u31 u32

∣∣∣∣ω4 +
∣∣∣∣u21 u22

u41 u42

∣∣∣∣ω5 +
∣∣∣∣ u31 u32

u41 u42

∣∣∣∣ω6,

according to (103). For the norm of this vector we get from (104) and (105):

‖u1 ∧ u2‖2 =
∣∣∣∣ ‖u1‖2 u1 · u2

u2 · u1 ‖u2‖2

∣∣∣∣ =
∣∣∣∣ u11 u12

u21 u22

∣∣∣∣
2

+
∣∣∣∣ u11 u12

u31 u32

∣∣∣∣
2

+

+
∣∣∣∣ u11 u12

u41 u42

∣∣∣∣
2

+
∣∣∣∣ u21 u22

u31 u32

∣∣∣∣
2

+
∣∣∣∣ u21 u22

u41 u42

∣∣∣∣
2

+
∣∣∣∣ u31 u32

u41 u42

∣∣∣∣
2

,

where ‖ ‖ is used also for denoting the usual Euclidian norm of a vector.
In a similar way we conclude that the norm of the 3-vector produced by u1, u2,

u3

u1 ∧ u2 ∧ u3 =
∣∣∣∣∣∣
u11 u12 u13

u21 u22 u23

u31 u32 u33

∣∣∣∣∣∣ y1 +
∣∣∣∣∣∣
u11 u12 u13

u21 u22 u23

u41 u42 u43

∣∣∣∣∣∣ y2 +

+
∣∣∣∣∣∣
u11 u12 u13

u31 u32 u33

u41 u42 u43

∣∣∣∣∣∣ y3 +
∣∣∣∣∣∣
u21 u22 u23

u31 u32 u33

u41 u42 u43

∣∣∣∣∣∣ y4

is
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‖u1 ∧ u2 ∧ u3‖2 =
∣∣∣∣∣∣
‖u1‖2 u1 · u2 u1 · u3

u2 · u1 ‖u2‖2 u2 · u3

u3 · u1 u3 · u2 ‖u3‖2

∣∣∣∣∣∣
=
∣∣∣∣∣∣
u11 u12 u13

u21 u22 u23

u31 u32 u33

∣∣∣∣∣∣
2

+
∣∣∣∣∣∣
u11 u12 u13

u21 u22 u23

u41 u42 u43

∣∣∣∣∣∣
2

+
∣∣∣∣∣∣
u11 u12 u13

u31 u32 u33

u41 u42 u43

∣∣∣∣∣∣
2

+
∣∣∣∣∣∣
u21 u22 u23

u31 u32 u33

u41 u42 u43

∣∣∣∣∣∣
2

,

while the norm of the 4-vector produced by u1, u2, u3, u4

u1 ∧ u2 ∧ u3 ∧ u4 = |U| x1

is given by

‖u1 ∧ u2 ∧ u3 ∧ u4‖2 =

∣∣∣∣∣∣∣∣

‖u1‖2 u1 · u2 u1 · u3 u1 · u4

u2 · u1 ‖u2‖2 u2 · u3 u2 · u4

u3 · u1 u3 · u2 ‖u3‖2 u3 · u4

u4 · u1 u4 · u2 u4 · u3 ‖u4‖2

∣∣∣∣∣∣∣∣
= |U|2 .
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51. Froeschlé, C.: Numerical study of dynamical systems with three degrees of freedom II.
Numerical displays of four-dimensional sections. Astron. Astrophs. 5, 177–183 (1970)
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69. Guzzo, M., Lega, E., Froeschlé, C.: On the numerical detection of the effective stability of

chaotic motions in quasi-integrable systems. Physica D 163, 1–25 (2002)
70. Haken, H.: At least one Lyapunov exponent vanishes if the trajectory of an attractor does not

contain a fixed point. Phys. Let. A 94, 71–72 (1983)
71. Hegger, R., Kantz, H., Schreiber, T.: Practical implementation of nonlinear time series meth-

ods: The TISEAN package. Chaos 9, 413–435 (1999)
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132. Süli, Á.: Speed and efficiency of chaos detection methods. In: Süli, Á., Freistetter, F., Pál,
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